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ABSTRACT
We explore the class of problems where a central planner needs to
select a subset of agents, each with different quality and cost. The
planner wants to maximize its utility while ensuring that the average
quality of the selected agents is above a certain threshold. When the
agents’ quality is known, we formulate our problem as an integer
linear program (ILP) and propose a deterministic algorithm, namely
DPSS that provides an exact solution to our ILP.

We then consider the setting when the qualities of the agents are
unknown. We model this as a Multi-Arm Bandit (MAB) problem and
propose DPSS-UCB to learn the qualities over multiple rounds. We
show that after a certain number of rounds, τ , DPSS-UCB outputs
a subset of agents that satisfy the average quality constraint with a
high probability. Next, we provide bounds on τ and prove that after τ
rounds, the algorithm incurs a regret of O(lnT ), where T is the total
number of rounds. We further illustrate the efficacy of DPSS-UCB
through simulations. To overcome the computational limitations of
DPSS, we propose a polynomial-time greedy algorithm, namely
GSS, that provides an approximate solution to our ILP. We also
compare the performance of DPSS and GSS through experiments.
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1 INTRODUCTION
Almost all countries have cooperative societies that cater to devel-
oping sectors such as agriculture and handicrafts. We observed that
some cooperatives, especially those that are consumer-oriented, such
as Coop (Switzerland) or artisan cooperatives who operate their
stores, lack a well-defined system to procure products from its many
members (manufacturers, artisans, or farmers). Since the production
is highly decentralized and usually not standardized, each producer
has a different quality and cost of produce depending on various
factors such as workmanship and the scale at which it operates. The
central planner (say, the cooperative manager) has to carefully trade-
off between each producer’s qualities and cost to decide the quantity
to procure from each producer so that it is most beneficial for the
society as a whole.

This problem is not limited to cooperatives, but it is also faced
in other familiar marketplaces. E-commerce platforms, like Ama-
zon and Alibaba, have several sellers registered on their platform.
For each product, the platform needs to select a subset of sellers to
display on its page while ensuring that it avoids low-quality sellers
and does not display only the searched product’s high-cost variants.
Similarly, a supermarket chain may need to decide the number of
apples to procure from the regional apple farmers, each with a dif-
ferent quality of produce, to maximize profits while ensuring that
the quality standards are met.

We formulate this as a subset selection problem where a central
planner needs to select a subset of these sellers/producers, whom
we refer to as agents. In this paper, we associate each agent with
its quality and cost of production. The agent’s quality refers to the
average quality of the units produced by it; however, the quality
of an individual unit of its product could be stochastic, especially
in artistic and farm products. Thus, it becomes difficult to design
an algorithm that guarantees constraint satisfaction on the realized
qualities of the individual units procured. Towards this, we show
that we achieve probably approximately correct (PAC) results by
satisfying our constraint on the expected average quality of the units
procured. Every unit procured from these agents generates revenue
that is a function of its quality. The planner aims to maximize its
utility (i.e., revenue - cost) while ensuring that the procured units’
average quality is above a certain threshold to guarantee customer
satisfaction and retention [1, 29]. When the agents’ quality is known,
we model our problem as an Integer Linear Program (ILP) and
propose a novel algorithm, DPSS that provides an exact solution to
our ILP.

Often, the quality of the agents is unknown to the planner before-
hand. An E-commerce platform may not know its sellers’ quality at
the time of registration, and an artisan’s quality of work may be hard
to estimate until its products are procured and sold in the market.
Thus, the planner needs to carefully learn the qualities by procur-
ing units from the agents across multiple rounds while minimizing
its utility loss. Towards this, we model our setting as a Multi-Arm
Bandit (MAB) problem, where each agent represents an indepen-
dent arm with an unknown parameter (here, quality). To model our
subset selection problem, we consider the variant of the classical
MAB setting where we may select more than one agent in a single
round. This setting is popularly referred to as a Combinatorial MAB
(CMAB) problem [12, 17, 24]. In studying CMAB, we consider
the semi-bandit feedback model where the algorithm observes the
quality realizations corresponding to each of the selected arms and
the overall utility for selecting the subset of arms. The problem
becomes more interesting when we also need to ensure our quality
constraint in a CMAB problem. We position our work with respect
to the existing literature in Section 2.

Typically, in a CMAB problem, the planner’s goal is to minimize
the expected regret, i.e., the difference between the expected cumu-
lative utility of the best offline algorithm with known distributions
of an agent’s quality and the expected cumulative reward of the al-
gorithm. However, the traditional definition of regret is not suitable
in our setting as an optimal subset of agents (in terms of utility) may
violate the quality constraint. Thus, we modify the regret definition
to make it compatible with our setting. We propose a novel, UCB-
inspired algorithm, DPSS-UCB, that addresses the subset selection
problem when the agents’ quality is unknown. We show that after



a certain threshold number of rounds, τ , the algorithm satisfies the
quality constraint with a high probability for every subsequent round,
and under the revised regret definition, it incurs a regret of O(lnT ),
where T is the total number of rounds.

To address the computational challenges of DPSS which has a
time complexity of O(2n ), we propose a greedy-based algorithm,
GSS that runs in polynomial time O(n lnn), where n is the number
of agents. We show that while the approximation ratio of the utility
achieved by GSS to that of DPSS can be arbitrarily small in the
worst case, it achieves almost the same utility as DPSS in practice,
which makes GSS a practical alternative to DPSS especially when n
is large.

In summary, our contributions are:

• We propose a framework, SS-UCB, to model subset selection
problem under constraints when the properties (here, quali-
ties) of the agents are unknown to the central planner. In our
setting, both the objective function and the constraint depends
on the unknown parameter.
• We first formulate our problem as an ILP assuming the agents’

quality to be known and propose a novel, deterministic algo-
rithm, namely DPSS(Algorithm 1) to solve the ILP.
• Using DPSS, we design DPSS-UCB which addresses the

setting where the agents’ quality is unknown. We prove that
after a certain number of rounds, τ = O(lnT ), DPSS-UCB
satisfies quality constraint with high probability. We also
prove that it achieves a regret of O(lnT ) (Theorem 1).
• To address the computational limitation of DPSS, we propose

an alternative greedy approach, GSS and GSS-UCB, that
solves the known and the unknown settings, respectively. We
show that while the greedy approach may not be optimal, it
performs well in practice with a huge computational gain that
allows our framework to scale to settings with a large number
of agents.

The remaining of the paper is organized as follows: In Section
2, we discuss the related works. In Section 3, we define our model
and solve for the setting when the quality of the agents are known.
In Section 4, we address the problem when the quality of the agents
is unknown. In Section 5, we propose a greedy approach to our
problem. In Section 6, we discuss our simulation-based analysis and
conclude the paper in Section 7.

2 RELATED WORK
Subset selection is a well-studied class of problems that finds its
applications in many fields, for example, in retail, vehicle routing,
and network theory. Usually, these problems are modeled as knap-
sack problems where a central planner needs to select a subset of
agents that maximizes its utility under budgetary constraints [33].
There are several variations to the knapsack, such as robustness [26],
dynamic knapsacks [25], and knapsack with multiple constraints
[27] studied in the literature. In this paper, we consider a variant
where the constraint is not additive, i.e., adding another agent to a
subset doesn’t always increase the average quality.

When online learning is involved, the stochastic multi-armed
bandit (MAB) problem captures the exploration vs. exploitation
trade-off effectively [6, 19, 21–23, 28, 31, 32]. The classical MAB
problem involves learning the optimal agent from a set of agents

with a fixed but unknown reward distribution [3, 7, 28, 30]. Combi-
natorial MAB (CMAB) [8–10, 13, 16] is an extension to the classical
MAB problem where multiple agents can be selected in any round. In
[10, 11, 17], the authors have considered a CMAB setting where they
assume the availability of a feasible set of subsets to select from. The
key difference with our setting is that our constraint itself depends
on the unknown parameter (quality) that we are learning through
MAB. Thus, the feasible subsets that satisfy the constraint need to
be learned, unlike the previous works. [10, 11, 17] also assumes
the availability of an oracle that outputs an optimal subset given
the estimates of the parameter as input, whereas we design such an
oracle for our problem. Bandits with Knapsacks (BwK) is another
interesting extension that introduces constraints in the standard ban-
dit setting [2, 4, 5, 22] and finds its applications in dynamic pricing,
crowdsourcing, etc. (see [2, 4]). Typically, in BwK, the objective is
to learn the optimal agent(s) under a budgetary constraint (e.g., a
limited number of selections) that depends solely on the agents’ cost.
However, we consider a setting where the selected subset needs to
satisfy a quality constraint that depends on the learned qualities.

The closest work to ours is Jain et al. [22] where the authors
present an assured accuracy bandit (AAB) framework where the
objective is to minimize cost while ensuring a target accuracy level
in each round. While they do consider a constraint setting similar to
ours, the objective function in [22] depends only on the agents’ cost
and not on the qualities of the agents that are unknown. Hence, it
makes our setting different and more generalizable with respect to
both AAB and CMAB as in our setting, both the constraint and the
utility function depend on the unknown parameter.

3 SUBSET SELECTION WITH KNOWN
QUALITIES OF AGENTS

Here we assume that the agents’ quality is known and consider the
problem where a central planner C needs to procure multiple units
of a particular product from a fixed set of agents. Each agent is
associated with the quality and cost of production.C’s objective is to
procure the units from the agents such that the average quality of all
the units procured meets a certain threshold. We assume that there is
no upper limit to the number of units it can procure as long as the
quality threshold is met.

In Section 3.1, we define the notations required to describe our
model, formulate it as an integer linear program (ILP) in Section 3.3,
and propose a solution to it in Section 3.4.

3.1 Model and Notations
(1) There is a fixed set of agents N = {1; 2; : : : ;n} available for

selection for procurement by planner C.
(2) Agent i has a cost of production, ci , and capacity, ki .
(3) The quality of the jth unit of produce by agent i is denoted

by Qi j , which we model as a Bernoulli random variable.
(4) For any agent i, the probability that Qi j is 1 is defined by qi ,

i.e., E[Qi j ] = qi for any unit j procured from agent i. qi is
also referred to as the quality of the agent in the rest of the
paper.



(5) The utility forC to procure a single unit of produce from agent
i is denoted by ri , which is equal to its expected revenue1

minus the cost of production, i.e., ri = Rqi − ci , where R is
the proportionality constant.

(6) The quantity of products procured by C from the ith agent is
given by xi .

(7) The average quality of products procured by C is therefore

equal to
˝

i∈N
˝xi

j=1 Qi j˝
i∈N xi

.

(8) We define qav =
˝

i∈N xi qi˝
i∈N xi

, which is the expected average
quality of the units procured by C.

(9) C needs to ensure that the average quality of all the units
procured is above a certain threshold, α ∈ [0; 1].

(10) The total utility of C is given by, z =
˝

i ∈N xiri .

Usually, an individual unit’s quality Qi j may not be quantifiable and
can only be characterized by observing whether it was sold. Hence,
we model it as a Bernoulli random variable.

3.2 Ensuring Quality Constraints
In our setting, average quality (Section 3.1, point 7) is dependent on
Qi j , which is stochastic in nature. In such a stochastic framework, it
is more natural to work with expected terms than on a sequence of
realized values. Towards this, we show that by ensuring our quality
constraint on expected average quality, qav , instead, we can still
achieve approximate constraint satisfaction with a high probability.
Formally, we present the following lemma,

LEMMA 1. The probability that average quality is less than α −ϵ
given that qav ≥ α , can be bounded as follows:

P

 ˝
i ∈N

˝xi
j=1Qi j˝

i ∈N xi
< α − ϵ | qav ≥ α

!
≤ exp (−2ϵ2m));

wherem =
˝

i ∈N xi , and ϵ is a constant.

PROOF. Let, V =

˝
i∈N

˝xi
j=1 Qi j˝

i∈N xi

E[V ] =

˝
i ∈N

˝xi
j=1 E[Qi j ]˝

i ∈N xi
=

˝
i ∈N qixi˝
i ∈N xi

= qav

Therefore,

P
�
V < α − ϵ | E[V ] ≥ α

�
≤ P

�
V < E[V ] − ϵ)

= P
�
V − E[V ] < −ϵ) ≤ exp(−2ϵ2m)

The last line follows from the Hoeffding’s inequality [20]. �

From the above lemma, we show that by ensuring qav ≥ α ,
we can achieve probably approximate correct (PAC) results on our
constraint. Hence, for the rest of the paper, we work with qav ≥ α
as our quality constraint (QC).

1We assume expected revenue to be proportional to the quality of the product. It is a
reasonable assumption as if qi is the probability of the product being sold and R is the
price of the product, its expected revenue would be Rqi

3.3 Integer Linear Program (ILP)
When the qualities of the agents are known, the planner’s subset
selection problem can be formulated as an ILP where it needs to
decide on the number of units, xi , to procure from each agent i so
as to maximize its utility (objective function) while ensuring the
quality and capacity constraints. The optimization problem can be
described as follows:

max
xi

Õ
i ∈N
(Rqi − ci )xi

s.t. qav =

˝
i ∈N qixi˝
i ∈N xi

qav ≥ α

0 ≤ xi ≤ ki ∀i ∈ N

xi ∈ Z ∀i ∈ N

(1)

3.4 Dynamic Programming Based Subset
Selection (DPSS)

In order to solve the ILP, we propose a dynamic programming based
algorithm, called DPSS. For ease of exposition, we consider ki = 1,
i.e., each agent has a unit capacity of production. This is a reasonable
assumption that doesn’t change our algorithm’s results, since, for
an agent with ki > 1, we can consider each unit as a separate agent,
and the proofs and discussion henceforth follows.

Formally, the algorithm proceeds as follows:

(1) Divide the agents into one of the four categories:
(a) S1: Agents with qi ≥ α and ri ≥ 0
(b) S2: Agents with qi < α and ri ≥ 0
(c) S3: Agents with qi ≥ α and ri < 0
(d) S4: Agents with qi < α and ri < 0

(2) Let x = {xi }i ∈N be the selection vector, where xi = 1 if the
ith agent is selected and 0 otherwise.

(3) Since an agent in S1 has a positive utility and above threshold
quality, xi = 1, ∀i ∈ S1. Let d =

˝
i ∈S1 (qi − α) be the excess

quality accumulated.
(4) Similarly, all units in S4 have a negative utility and below

threshold quality. Hence, xi = 0, ∀i ∈ S4.
(5) Let G be the set of the remaining agents (in S2 and S3). For

each agent i ∈ G, we define di = qi − α . Thus, we need to
select the agents i ∈ G that maximizes the utility, such that˝

i ∈G xidi ≤ d.
(6) For agents in G, select according to the DP function defined

in Algorithm 1 (Lines [8-16]). Here, dte denotes the access
quality accumulated before choosing the next agent and xte
refers to the selections made so far in the DP formulation.

4 SUBSET SELECTION WITH UNKNOWN
QUALITIES OF AGENTS

In the previous section, we assumed that the qualities of the agents,
qi , are known to C. We now consider a setting when qi are unknown
beforehand and can only be learned by selecting the agents. We
model it as a CMAB problem with semi-bandit feedback and QC.



Algorithm 1 DPSS
1: Inputs: N , α , R, costs c = {ci }i∈N , qualities q = {qi }i∈N
2: Output: Quantities procured x = (x1; : : : ; xn )

3: Initialization: ∀i ∈ N , ri = Rqi − ci , z = 0
4: Segregate S1,S2,S3,S4 as described in Section 3.4
5: ∀i ∈ S1, xi = 1; z = z + ri ; d =

˝
i∈S1 (qi − α )

6: ∀i ∈ S4, xi = 0
7: G = S2 ∪ S3 ; ∀i ∈ G ; di = qi − α
8: function DP(i ; d te ; x te ; x⋆; zte ; z⋆)
9: if i == |G | and d te < 0 then return x⋆; z⋆

10: if i == |G | and d te ≥ 0 then
11: if zte > z⋆ then
12: z⋆ = zte ; x⋆ = x te

13: return x⋆; z⋆

14: x⋆; z⋆ = DP (i + 1; d te ; [x te ; 0]; x⋆; zte ; z⋆)
15: x⋆; z⋆ = DP (i + 1; d te + di ; [x te ; 1]; x⋆; zte + ri ; z⋆)
16: return x⋆; z⋆

17: xG ; zG = DP(0,d,[ ],[ ],0,0)
18: ∀i ∈ G ; xi = xG

i
19: return x

4.1 Additional Notations
We introduce the additional notations to model our problem. Similar
to our previous setting, we assume that we are given a fixed set of
agents, N , each with its own average quality of produce, qi and
cost of produce, ci . Additionally, our algorithm proceeds in discrete
rounds t = 1; : : : ;T . For a round t :

• Let xt ∈ {0; 1}n be the selection vector at round t , where
xt

i = 1 if the agent i is selected in round t and xt
i = 0 if not.

• The algorithm selects a subset of agents, St ⊆ N , referred to
as a super-arm henceforth, where St = {i ∈ N |xt

i = 1}. Let
st be cardinality of selected super-arm, i.e., st = |St |.
• Let wt

i denote the number of rounds an agent i has been
selected until round t , i.e., wt

i =
˝
y≤t x

y
i .

• For each agent i ∈ St , the planner, C, observes its realized
quality X

j
i , where j = wt

i and E[X j
i ] = qi . For an agent i < St ,

we do not observe its realized quality (semi-bandit setting).
• The empirical mean estimate of qi at round t , is denoted

by q̂t
i = 1

w t
i

˝w t
i

j=1 X
j
i . The upper confidence bound (UCB)

estimate is denoted by (q̂t
i )

+ = q̂t
i +

r
3 ln t
2w t

i
.

• Utility to C at round t is given by: rq (St ) =
˝

i ∈S t Rqi − ci ,
where q = {q1;q2; : : : ;qn } is the quality vector.
• The expected average quality of selected super-arm at round
t is given by: qt

av = 1
s t

˝
i ∈S t qi .

Following from Lemma 1, we continue to work with expected aver-
age quality instead of realized average quality.

4.2 SS-UCB
In this section, we propose an abstract framework, SS-UCB, for
subset selection problem with quality constraint. SS-UCB assumes
that there exist an offline subset selection algorithm, SSA, (e.g.,
DPSS), which takes a vector of qualities, q′, and costs, c ′, along
with the target quality threshold, α ′, and proportionality constant,

R, as an input and returns a super-arm which satisfies the quality
constraint (QC) with respect to q′ and α ′.

SS-UCB runs in two phases: (i) Exploration: where all the agents
are explored for certain threshold number of rounds, τ ; (ii) Explore-
exploit: We invoke SSA (line 10, Algorithm 2) with {(q̂t

i )
+}i ∈N ,

{ci }i ∈N , α +ϵ2 and R as the input parameters and select accordingly.
We invoke SSA with a slightly higher target threshold, α +ϵ2, so that
our algorithm is more conservative while selecting the super-arm in
order to ensure QC with a high probability (discussed in Section 4.3).
As we shall see in Section 4.3, the higher the value of ϵ2, the sooner
the SSA satisfies QC with a high probability but it comes with the
cost of loss in utility. Thus, the value of ϵ2 must be appropriately
selected based on the planner’s preferences.

We refer to the algorithm as DPSS-UCB when we use DPSS
(Algorithm 1) as SSA in the SS-UCB framework. We show that
DPSS-UCB outputs the super-arm that satisfies the QC with high
probability (w.h.p) after a certain threshold number of rounds, τ , and
incurs a regret of O(lnT ).

Algorithm 2 SS-UCB
1: Inputs: N , α , ϵ2, R, costs c = {ci }i∈N
2: For each agent i , maintain: w t

i , q̂t
i , (q̂t

i )
+

3: τ ← 3 lnT
2ϵ 22

; t = 0

4: while t ≤ τ (Explore Phase) do
5: Play a super-arm S t = N
6: Observe qualities X j

i ; ∀i ∈ S t and update w t
i , q̂t

i
7: t ← t + 1
8: while t ≤ T (Explore-Exploit Phase) do

9: For each agent i , set (q̂t
i )

+ = q̂t
i +

r
3 ln t
2w t

i

10: S t = SSA ({(q̂t
i )

+ }i∈N ; c ; α + ϵ2,R)
11: Observe qualities X j

i ; ∀i ∈ S t and update w t
i , q̂t

i
12: t ← t + 1

4.3 Ensuring Quality Constraints
We provide Probably Approximate Correct (PAC) [14, 18] bounds
on DPSS-UCB satisfying QC after τ rounds:

THEOREM 1. For τ = 3 lnT
2ϵ 22

, if each agent is explored τ number

of rounds, then if we invoke DPSS with target threshold α + ϵ2 and
{(q̂t

i )
+}i ∈N as the input, the QC is approximately met with high

probability.

P

 
qt

av < α − ϵ1 |
1
st

Õ
i ∈S t

(q̂t
i )

+ ≥ α + ϵ2; t > τ

!
≤ exp(−ϵ21t):

where ϵ1 is the tolerance parameter and refers to the planner’s
ability to tolerate a slighty lower average quality than required.

Henceforth, a super-arm will be called correct if it satisfies the
QC approximately as described above.

PROOF. The proof is divided into two parts. Firstly, we show that
for each t > τ round, the average value of (q̂t

i )
+ and that of q̂t

i of the
agents i in selected super-arm St is less than ϵ2. Secondly, we show
that if the average of q̂t

i is guaranteed to be above the threshold, then
the average of qi over the selected agents would not be less than
α − ϵ1 with a high probability.



LEMMA 2. The difference between the average of (q̂t
i )

+ and the
average of q̂t

i over the agents i in St is less than ϵ2, ∀t > τ .

PROOF. We have,

1
st

Õ
i ∈S t

�
(q̂t

i )
+ − q̂t

i
�

=
1
st

Õ
i ∈S t

√
3 ln tq
2wt

i

≤

√
3 ln tq
2wt

min

:

where wt
min = mini w

t
i . Since, for t < τ , we are exploring all the

agents, thus, wτi = τ . Now, since wt
i ≥ wτi , ∀t > τ , thus, we claim

that wt
min ≥ τ for t > τ . Hence,

√
3 ln tq
2wt

min

≤

√
3 lnT
√
2τ

:

For τ = 3 lnT
2ϵ 22

, we have,

1
st

Õ
i ∈S t

�
(q̂t

i )
+ − q̂t

i
�
≤ ϵ2:

�

LEMMA 3. ∀t > τ

P

 
qt

av < α − ϵ1 |
1
st

� Õ
i ∈S t

�
q̂t

i ) ≥ α
� !
≤ exp(−ϵ21t):

PROOF. Let Y t = 1
s t

˝
i ∈S t q̂t

i . Since E[q̂t
i ] = E[X j

i ] = qi , E[Y t ]
= qt

av . Hence, we have,

P(E[Y t ] < α − ϵ1) | Y
t ≥ α) ≤ P

�
Y t ≥ E[Y t ] + ϵ1)

≤ exp(−ϵ21w
t ):

wherewt =
˝

i ∈S t wt
i , i.e., total number of agents selected till round

t . Since we pull atleast one agent in each round, we can say that,
wt ≥ t . Thus, ∀t > τ

P

 
qt

av < α − ϵ1 |
1
st

 Õ
i ∈S t

�
q̂t

i ) ≥ α

! !
≤ exp(−ϵ21t):

�

From Lemma 2 and Lemma 3, the proof follows. �

4.4 Regret Analysis of DPSS-UCB
In this section, we propose the regret definition for our problem
setting that encapsulates the QC. We then upper bound the regret
incurred by DPSS-UCB to be of the order O(lnT ).

We define regret incurred by an algorithm A on round t as follows:

Reдt (A) =

(
(rq (S

?) − rq (S
t )) if St satisfies QC

L otherwise:

where S? = arдmaxS ∈Sf rq (S) and L = maxS ∈Sf (rq (S
?) − rq (S)) is

some constant. Here, Sf are the feasible subsets which satisfies QC;

Sf = {S |S ⊆ Nand
˝

i∈s xi qi˝
i∈s xi

≥ qav }.
Hence, the cumulative regret in T rounds incurred by the algorithm
is:

Reд(A) =

TÕ
t=1

Reдt (A): (2)

We now analyse the regret when the algorithm, A, is DPSS-UCB.

Reд(A) =

τÕ
t=1

Reдt (A) +
TÕ

t=τ+1
Reдt (A)

≤ L · τ +

TÕ
t=τ+1

Reдt (A)

≤
L · 3 lnT

2ϵ22
+

TÕ
t=τ+1

Reдt (A):

Since our algorithm ensures that St satisfies the approximate QC
for t > τ with a probability greater than 1−σ , where σ = exp(−ϵ21t),
we have,

E[Reд(A)] ≤
L · 3 logT

2ϵ22
+

'›››››››«
Õ
t ≥τ

�
(1 − σ )(rq (S?) − rq (S

t ))
�

|                                  {z                                  }
Reдu (T )

+σL

“fififififififi‹
:

(3)
where St ∈ Sf .

Now, Õ
t ≥τ

σL =
Õ
t ≥τ

Le(−ϵ
2
1 t ) ≤

Le(−ϵ
2
1 τ )

1 − e(−ϵ
2
1 )

∼ O

�
1
T a

�
; where a =

3ϵ21
2ϵ22

:

Now we bound the cumulative regret incurred after t > τ rounds
when QC is satisfied, i.e., Reдu (T ). Here we adapt the regret proof
given by Chen et al. [10]. We highlight the similarities and differ-
ences of our setting with theirs and use it to bound Reдu (T ).

Bounding Reдu (T ):
Chen et al. [10] have proposed CUCB algorithm to tackle CMAB
problem which they prove to have an upper bound regret of O(lnT ).
Following is the CMAB problem setting considered in [10]:

• There exists a constrained set of super-arms χ ⊆ 2N available
for selection.
• There exists an offline (η;ν )-approximation oracle, (η;ν ≤ 1)

s.t. for a given quality vector q′ as input, it outputs a super-
arm, S, such P(rq′(S) ≥ η · optq′) ≥ ν , where optq′ is the
optimal reward for quality vector q′ as input.
• Their regret bounds hold for any reward function that fol-

lows the properties of monotonicity and bounded smoothness
(defined below).
• Similar to our setting, they assume a semi-bandit feedback

mechanism.

Now, we state the reasons to adopt the regret analysis provided
by Chen et al. [10] to bound Reдu (T )

(1) We have shown that after τ rounds, we get the constrained set
of super-arms, χ , i.e., the set of super-arms that satisfies QC),
which forms a well defined constrained set, to select from in
future rounds (t > τ ).

(2) We remark here that the utility function considered in our
problem setting follows both the required properties, namely,



(i) Monotonicity: The expected reward of playing any super-
arm S ∈ χ is monotonically non-decreasing with respect to
the quality vector, i.e., let q and q be two quality vectors such
that ∀i ∈ N , qi ≤ qi , we have rq (S) ≤ rq (S) for all S ∈ χ .
Since our reward function is linear, it is trivial to note that it
is monotone on qualities.
(ii) Bounded Smoothness: There exists a strictly increasing
(and thus invertible) function f (:), called bounded smooth-
ness function, such that for any two quality vectors q and q,
we have rq (S) − rq (S) ≤ f(Λ) if maxi ∈S qi - qi ≤ Λ. As our
reward function is linear in qualities, f (Λ) = nR × Λ is the
bounded smoothness function for our setting, where n is the
number of agents.

(3) Oracle: Analogous to the oracle assumption in [10], we have
assumed the existence of an algorithm SSA (Section 4.2). For
DPSS-UCB, we use DPSS (Algorithm 1) as our SSA . As
DPSS provides exact solution, it acts as an (η;ν )- approximate
oracle for DPSS-UCB with η = 1 = ν .

However, to ensure χ consists of all the correct super-arms, we
need one additional property that should be satisfied, namely ϵ-
seperatedness property.

DEFINITION 1. We say q = (q1;q2; : : : ;qn ) satisfies ϵ-seperatedness
if ∀S ⊆ N , U (S) = 1

s
˝

i ∈S qi s.t. U (S) < (α − ϵ;α)

This suggests that there is no super-arm S ∈ χ , such that α −
ϵ ≤ 1

|S |
˝

i ∈S q
t
i ≤ α . It is important for DPSS-UCB to satisfy ϵ1-

seperatedness because if there exists such a super-arm, for which the
average quality is between (α − ϵ1, α ), DPSS-UCB will include it in
χ due to tolerance parameter ϵ1 while it would violate the QC.

THEOREM 2. If qualities of the agents satisfy ϵ1-seperatedness,
then Reдu (T ) is bounded by O(lnT ).

PROOF. Following from the proof in [10], we define some pa-
rameters. A super-arm, S is bad if rq (S) < optq . Define SB as the set
of bad super-arms. For a given underlying agent i ∈ [n], define:

∆i
min = optq −max{rq (S)|S ∈ SB ; i ∈ S}

∆i
max = optq −min{rq (S)|S ∈ SB ; i ∈ S}:

Using the same proof as in [10], we can show that,VT , the expected
number of times we play a sub-optimal agent till round T , is upper
bounded as:

VT ≤ n(lT ) +
TÕ

t=τ

2n
t2
≤ n(lT ) +

TÕ
t=1

2n
t2

≤
6n · lnT
(f −1(∆min))2

+

�
π 2

3

�
· n:

where lT = 6 lnT
(f −1(∆min))2

. Hence, we can bound the regret as:-

Reдu (T ) ≤ VT · ∆max ≤

�
6 · lnT

(f −1(∆min))2
+
π 2

3

�
n · ∆max

=

 
6 · lnT
(
∆min

R )
2

+
π 2

3

!
n · ∆max:

�

Substituting the results of Theorem 2 in Equation 3, we prove that
DPSS-UCB incurs a regret of O(lnT ).

5 GREEDY APPROACH
In the previous sections, we propose a framework and dynamic
programming based algorithm to solve our subset selection problem
for both when the agents’ quality is known and not. Since DPSS
explores all the possible combinations of the selection vector and
the utility associated with it, the complexity of DPSS is of O(2n ),
which makes it difficult to scale when n is large.

To overcome this limitation, we propose a greedy based approach
to our problem. When the quality of agents are known, we propose
GSS that runs in polynomial time, O(n logn), and provides an ap-
proximate solution to our ILP. Then, we use GSS as our SSA in the
SS-UCB framework and propose GSS-UCB as an alternate algo-
rithm to DPSS-UCB in the setting where the qualities of the agents
are unknown.

5.1 Greedy Subset Selection (GSS)
Greedy algorithms have been proven effective to provide approxi-
mate solutions to ILP problems such as 0-1 knapsack. They do so
by solving linearly relaxed variants of an ILP, such as fractional
knapsack, and removing any fractional unit from its solution. We
propose a similar algorithm for our subset selection problem by
allowing xi ∈ [0; 1]. However, we cannot simply remove fractional
units from our solution, as it may lead to QC violation. Consider the
following example:

Given n = 2 agents with qualities, q = [0:6; 0:9], c = [10; 100] and
α = 0:7. Allowing fractional units to be taken, the optimal solution
would be to take x1 = 1; x2 = 0:5 units of the two agents. Removing
fractional units would lead to selecting only the first agent, which
violates the QC. Towards this, we include an additional step (Line 22,
Algorithm 3) in our algorithm that ensures that QC is not violated.
Formally, the algorithm proceeds as follows:

(1) Divide the agents into the four categories, namely, S1,S2,S3,S4,
as described in Section 3.4.

(2) Select all agents in S1. Let d =
˝

i ∈S1 (qi − α) be the excess
quality accumulated and as before, drop all agents in S4.

(3) For agents in S2, sort them in the decreasing order of revenue
gained per unit loss in quality ( ri

α−qi
). Similarly, for agents in

S3, sort them in the increasing order of revenue lost per unit
gain in quality ( ri

α−qi
).

(4) Select units (could be fractional) from agents from S2 until
the total loss of quality is no more than d . Essentially, we use
the agents in S2 to increase revenue while ensuring average
quality is above the threshold.

(5) For agents in S2 with remaining fractional units, we pair them
up with an equivalent fractional unit of an agent in S3 that
balances the loss in average quality.

(6) When the revenue gained per unit loss in quality from the
first non-exhausted agent in S2 is less than the revenue lost
per unit gain of quality from the first non-exhausted agent in
S3, terminate the algorithm. An agent is exhausted if the unit
produce is completely selected.

(7) For any agent in S3 with a fractional unit, take the complete
unit instead. For all other agents, remove any fractional units
selected.



Algorithm 3 GSS
1: Inputs: N , α , R, costs c = [ci ], qualities q = [qi ]

2: Output: Quantities procured x = (x1; : : : ; xn )

3: Initialization: ∀i ∈ N , ri = Rqi − ci
4: Segregate S1,S2,S3,S4 as described in Section 3.4
5: ∀i ∈ S1, xi = 1; d =

˝
i∈S1 (qi − α )

6: ∀i ∈ S4, xi = 0
7: L2 = sor t (S2) on decreasing order of ri

α−qi
8: L3 = sor t (S3) on increasing order of ri

α−qi
9: p = 0; q = 0

10: while d > 0 and p < |S2 | do
11: i = L2[p];
12: if α − qi ≤ d then xi = 1, d = d − α − qi , p+ = 1
13: else xi = d

α−qi
, d = 0

14: while p < |S2 | and q < |S3 | do
15: i = L2[p], j = L3[q]
16: a =

ri
α−qi

, b =
rj

α−qj
17: if a ≤ b then break;
18: w1 = min((1 − xi )(α − qi ); (1 − x j )(qj − α ))
19: xi + =

w1
α−qi

, x j + =
w1

qj−α
20: if xi == 0 then p + +;
21: if x j == 0 then q + +;

22: if 0 < x j < 1 then x j = 1
23: return ⌊x ⌋

5.2 Approximation Ratio
While GSS is computationally more efficient than DPSS, it is im-
portant to note that it may not always return the optimal subset of
agents. We show for the following example, that GSS doesn’t have a
constant approximation w.r.t. the optimal solution:

Consider n = 3 agents with qualities, q = [1:00; 0:98; 0:97] and
c = [R−ϵ; 78R100 ; 47R100 ]. Hence, r = [ϵ; R

5 ; R
2 ], where R is some constant

as discussed before such that ri = Rqi − ci . If α = 0:99, the value of
ri

α−qi
for the third agent is higher than that of the second, but only

a fractional unit can pair with the first agent. Hence, according to
GSS, we only select the first agent giving us a utility of ϵ , whereas
the optimal utility is equal to ϵ + R

5 corresponding to choosing the
first and the third agent. Thus, the approximation ratio is ϵ

ϵ+ R
5

. Since

ϵ can take an arbitrary small value, the approximation ratio between
the utility achieved by GSS and DPSS can be arbitrary small.

However, through experiments, we show that in practice, GSS
gives close to optimal solutions at a huge computational benefit that
allows us to scale our framework for a large number of agents, such
as in an E-commerce setting.

5.3 GSS-UCB
When we use GSS as the SSA in our SS-UCB framework, we refer
to the algorithm as GSS-UCB. While the regret analysis may not
necessarily hold, as GSS does not have a constant approximation,
we still show that in practice, it works as good as DPSS-UCB in both
(i) achieving constraint satisfaction after τ rounds and (ii) the regret
incurred thereafter. We show this via experiments, as discussed in
Section 6.

6 EXPERIMENTAL ANALYSIS
6.1 Subset Selection With Known Qualities
In this section, we compare the performance of GSS with DPSS in
the setting where quality of the agents is known. In Figure 1a, we
compare the ratio of the utility achieved by GSS (zдss ) to the utility
achieved by DPSS (zdpss ) while ensuring the QC is met. In Figure 2,
we present a box plot of the distribution of the ratios of these utilities
over 1000 iterations for α = 0:7. To compare the performance of
GSS for much larger values of n, we compare it against the utility
achieved by an ILP solver (zilp ), namely, the COIN-OR Branch
and Cut Solver (CBC) [15] since the computational limitations of
DPSS made it infeasible to run experiments for large values of n.
The results for the same are presented in Figure 1b. Lastly, in Table
1, we compare the ratio of the time taken by GSS (tдss ) with respect
to DPSS (tdpss ) and the ILP solver (tilp ) for different values of n
with α being set to 0:7.

6.1.1 Setup. For different values of n, the number of agents and
α , the quality threshold, we generate agents with qi and ci both
∼ U [0; 1]. For Figure 1a and 1b, we average our results over 1000
iterations for each (n, α ) pair, while in Figure 2, we plot the distribu-
tion of the ratios obtained in each of the 1000 iterations for different
values of n with α set to 0:7. We use R = 1 for all our experiments.

6.1.2 Results and Discussion. As can be seen from Figures 1a
and 1b, the average ratio of both (

zдss
zdpss

) and (
zдss
zilp

) lies approxi-
mately between [0.94,1.0], with a median of 1:0 for almost all values
of n and only a few outliers and a few rare instances when the ratio
drops below 0.2 as evident from Figure 2. This indicates that GSS
performs almost as good as DPSS in practice with an exponentially
improving computational performance in terms of time complexity
with respect to DPSS and an almost 50x improvement over the ILP
solver as well. This establishes the efficacy of GSS for practical use
at scale.

n tdpss : tдss tilp : tдss

2 5.5 70
5 15.7 64
8 32.6 63.7
10 54.3 58.6
12 106.3 67.6
14 284.4 65.3
16 897.1 60.2
18 3109.7 63.1
20 11360.6 68.1

n tilp : tдss

25 66.7
50 58.3

100 52.7
400 43.1
1000 31.8
5000 31.6

10000 34.5
50000 45

100000 56.8

Table 1: Computational Performance of GSS w.r.t. to DPSS
and ILP

6.2 Subset Selection With Unknown Qualities
In this section, we present experimental results of DPSS-UCB and
GSS-UCB towards the following:

(1) Constraint Satisfaction: As discussed in section 4.3, DPSS-
UCB satisfies the QC approximately with high probability



(a) w.r.t DPSS (b) w.r.t. ILP

Figure 1: Performance of GSS on different values of α

Figure 2: GSS vs DPSS ratio distribution

after τ = 3 lnT
2ϵ 22

rounds. Here, α + ϵ2 is the target constraint

of the agent when α is the required average quality threshold.
Towards this, we plot the average number of iterations where
DPSS-UCB and GSS-UCB returns a subset that satisfies QC
at each round in our experiment for different values of ϵ2.

(2) Regret incurred for t > τ : We show that the regret incurred
by our algorithm for t > τ , follows a curve upper bounded by
O(lnT ). Towards this we plot the cumulative regret vs. round
t , where τ < t ≤ T .

6.2.1 Setup. To carry out these experiments, we generated n = 10
agents with both qi , ci ∼ U [0; 1]. We chose α = 0:7 as for a higher
value of α the number of super-arms satisfying QC is very low and
hardly much to learn whereas for a low value, the number of super-
arms that satisfy QC is very high but practically of not much interest.
In Figure 4, we perform the experiment over a varied range of values
of ϵ2, whereas in Figure 3, we set ϵ2 = 0:01. We average our results
for 1000 iterations of each experiment. For example, in Figure 4,
a value of 0:4 at some round t , would denote that in 40% of the
iterations, the QC was satisfied at round t . For both the experiments,
R = 1 and T = 100000.

6.2.2 Discussion. Higher the value of ϵ2, higher is the target
constraint and thus more conservative is our algorithm in selecting
the subset of agents. Therefore, we achieve correctness quickly,
which is evident from Figure 4. In all three cases, the algorithm
achieves correctness in close to 100% of the iterations, after 3 lnT

2ϵ 22
rounds (indicated by the vertical dotted line), which justifies our
value of τ . Similarly, the regret incurred by DPSS-UCB for t >

τ follows a curve upper bounded by O(lnT ). The regret incurred
by GPSS-UCB is slightly lower than DPSS-UCB which further
establishes the efficacy of our greedy approach.

7 CONCLUSION AND FUTURE WORK
In this paper, we addressed the class of problems where a central
planner had to select a subset of agents that maximized its utility
while ensuring a quality constraint. We first considered the setting
where the agents’ quality is known and proposed DPSS that provided
an exact solution to our problem. When the qualities were unknown,
we modeled our problem as a CMAB problem with semi-bandit
feedback. We proposed SS-UCB as a framework to address this
problem where both the constraint and the objective function depend

Figure 3: Regret incurred for t > τ

Figure 4: Constraint Satisfaction at each round

on the unknown parameter, a setting not considered previously in
the literature. Using DPSS as our SSA in SS-UCB, we proposed
DPSS-UCB that incurred a O(lnT ) regret and achieved constraint
satisfaction with high probability after τ = O(lnT ) rounds. To ad-
dress the computational limitations of DPSS, we proposed GSS
for our problem that allowed us to scale our framework to a large
number of agents. Via simulations, we showed the efficacy of GSS.

The SS-UCB framework proposed in this paper can be used to
design and compare other approaches to this class of problems that
find its applications in many fields. It can also easily be extended
to solve for other interesting variants of the problem such as (i)
where the pool of agents to choose from is dynamic with new agents
entering the setting, (ii) where an agent selected in a particular round
is not available for the next few rounds (sleeping bandits) possi-
bly due to lead time in procuring the units, a setting which is very
common in operations research literature. Our work can also be ex-
tended to include strategic agents where the planner needs to design
a mechanism to elicit the agents’ cost of production truthfully.
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