Towards Open Ad Hoc Teamwork Using Graph-based Policy
Learning

Arrasy Rahman
University of Edinburgh
arrasy.rahman@ed.ac.uk

Filippos Christianos
University of Edinburgh
f.christianos@ed.ac.uk

ABSTRACT

Ad hoc teamwork is the challenging problem of designing an au-
tonomous agent that can adapt quickly to collaborate with team-
mates without prior coordination mechanisms, including joint train-
ing. Prior work in this area has focused on closed teams in which
the number of agents is fixed. In this work, we consider open teams
by allowing agents with different fixed policies to enter and leave
the environment without prior notification. Our solution builds on
graph neural networks to learn agent and joint-action value models
under varying team compositions. We contribute a novel action-
value computation that integrates the agent and joint-action value
model to produce action-value estimates. We empirically demon-
strate that our approach successfully models the effects other agents
have on the learner, which leads to policies that robustly adapt to
dynamic team compositions and significantly outperform several
alternative methods.

KEYWORDS

Ad Hoc Teamwork, Reinforcement Learning, Graph Neural Net-
works

1 INTRODUCTION

Many real-world problems require autonomous agents to perform
tasks in the presence of other agents. Recent multi-agent reinforce-
ment learning (MARL) approaches [e.g. 12, 14, 24, 30] solve such
problems by jointly training a set of agents with shared learning
procedures assuming knowledge of each agent’s reward function.
However, as agents become capable of long-term autonomy and are
used for a growing number of tasks, it is possible that agents may
have to interact with previously unknown other agents, without
the opportunity for prior joint training via MARL. Thus, research
in ad hoc teamwork [32] aims to design a single autonomous agent,
which we refer to as the learner, that can interact effectively with
other agents without pre-coordination such as joint training.
Prior ad hoc teamwork approaches [2, 6, 7, 11, 31] achieved this
aim by combining single-agent RL and agent modeling techniques
to learn from direct interaction with other agents. These approaches
were designed for closed teams in which the number of agents is
fixed. In practice, however, many tasks also require the learner
to adapt to a changing number of agents in the environment. For
example, consider an autonomous car that needs to drive differ-
ently depending on the number of nearby vehicles, which may be

Niklas Hopner
University of Amsterdam
n.r.hopner@uva.nl

Stefano V. Albrecht
University of Edinburgh
s.albrecht@ed.ac.uk

driven by humans or produced by different manufacturers, and
their respective driving styles.

We make a step towards the full ad hoc teamwork challenge by
considering open teams in which agents of varying fixed policies
may enter and leave the team at any time and without prior no-
tification. Open ad hoc teamwork involves three main challenges
that must be addressed without pre-coordination. First, the learner
must quickly adapt its policy to the unknown policies of other
agents. Second, handling openness requires the learner to adapt to
changing team sizes in addition to other agents’ types, which may
affect the policy and role a learner must adopt within the team [36].
Third, the changing number of agents results in a state vector of
variable length, which causes standard RL approaches that require
fixed-length state vectors to perform poorly, as we show in our
experiments.

We propose a novel algorithm designed for open ad hoc team-
work, called Graph-based Policy Learning (GPL)!, which addresses
the aforementioned challenges. GPL adapts to dynamic teams by
training a joint action value model which allows the learner to dis-
entangle the effect each agent’s action has on the learner’s returns.
To select optimal actions from the joint action value model, we con-
tribute a novel action-value computation method which integrates
joint-action value estimates with action predictions learned using
an agent model. To handle dynamic team sizes, the joint action
value model and agent model are both based on graph neural net-
work (GNN) architectures [10, 35] which have proven useful for
dealing with changing input sizes [18, 22]. Our computed action
values can be used within different value-based single-agent RL
algorithms; in our experiments we test two versions of GPL, one
based on Q-learning [26] and one based on soft policy iteration [17].

Our experiments evaluate GPL and various baselines in three
multi-agent environments (Level-based foraging [3], Wolfpack [23],
FortAttack [13]) for which we use different processes to determine
when agents enter or leave the environment and their type assign-
ments. We compare GPL against ablations of GPL that integrate
agent models using input concatenation, a common approach used
by prior works [15, 35]; as well as two MARL approaches (MAD-
DPG [24] and DGN [22]). Our results show that both tested GPL
variants achieve significantly higher returns than all other baselines
in most learning tasks, and that GPL generalizes more effectively
to previously unseen team sizes/compositions. We also provide
a detailed analysis of learned concepts within GPL’s joint action
value models.

! The implementation of GPL is provided in https://github.com/uoe-agents/GPL

2 RELATED WORK

Ad hoc teamwork: Ad hoc teamwork is at its core a single-agent
learning problem in which the agent must learn a policy that is
robust to different teammate types [32]. Early approaches focused
on matrix games in which the teammate behavior was known
[1, 33]. A predominant approach in ad hoc teamwork is to compute
Bayesian posteriors over defined teammate types and utilizing the
posteriors in reinforcement learning methods (such as Monte Carlo
Tree Search) to obtain optimal responses [2, 6]. Recent methods
applied deep learning-based techniques to handle switching agent
types [31] and to pretrain and select policies for different teammate
types [11]. All of these methods were designed for closed teams.
In contrast, GPL is the first algorithm designed for open ad hoc
teamwork in which agents of different types can dynamically enter
and leave the team.

Agent modeling: An agent model takes a history of observa-
tions (e.g actions, states) as input and produces a prediction about
the modeled agent, such as its goals or future actions [5]. Recent
agent modeling frameworks explored in deep reinforcement learn-
ing [19, 28, 29] are designed for closed environments. In contrast,
we consider open multi-agent environments in which the number
of active agents and their policies can vary in time. Tacchetti et al.
[35] proposed to use graph neural networks for modeling agent
interactions in closed environments. Unlike GPL, their method uses
predicted probabilities of future actions to augment the input into
a policy network, which did not lead to higher final returns in
their empirical evaluation and performs worse when generalizing
to teams with different sizes, as we will show in our experiments.

Multi-agent reinforcement learning (MARL): MARL algo-
rithms use RL techniques to co-train a set of agents in a multi-agent
system [27]. In contrast, ad hoc teamwork focuses on training a
single agent to interact with a set of agents of unknown types that
are in control over their own actions. One approach in MARL is to
learn factored action values to simplify the computation of optimal
joint actions for agents, using agent-wise action values [30, 34] and
coordination graphs (CG) [10, 40]. Unlike these methods which use
CGs to model joint action values for fully cooperative setups, we
use CGs in ad hoc teamwork to model the impact of other agents’
actions towards the learning agent’s returns. Jiang et al. [22] con-
sider MARL in open systems by utilizing GNN-based architectures
as value networks. In our experiments we use a baseline following
their method and show that it performs significantly worse than
GPL.

3 PROBLEM FORMULATION

The goal in open ad hoc teamwork is to train a learner agent to
interact with other agents that have unknown behavioural models,
called types, and which may enter or leave the environment at any
timestep. We formalize the problem of open ad hoc teamwork by
extending the Stochastic Bayesian Game model [2] to allow for
openness.

3.1 Open Stochastic Bayesian Games (OSBG)

An OSBG is a tuple (N, S, A, O, R, P), where N,S,A,0 represent the
set of agents, the state space, the action space, and the type space,
respectively. For simplicity we assume a common action space for

all agents, but this can be generalised to individual action spaces
for each agent. To define joint actions under variable number of
agents, we define a joint agent-action space Ay = {ala € P(N X
A),V(i,a"), (j,a)) € a:i=j= a' = al} and refer to the elements
a € AN as joint agent-actions. Similarly, we define a joint agent-
type space On = {6|6 € P(N x ©),V(i,0),(j,6/) € b:i=j=
0! = 67}, refer to @ € O as the joint agent-type and use 6 to
denote the type of agent i in 6. The conditions in the definition of
Oy and A constrain each agent to only select one action while
also being assigned to one type. Each agent follows its policy 7,

We assume the learner can observe the current state of the envi-
ronment and the past actions of other agents but not their types.
The learner’s reward is determined by R : S X Ax +— R. Assuming
A to be the set of all possible probability distributions over a ran-
dom variable, the transition function P : S X Ay — A(S X Op)
determines the probability of the next state and joint agent-types
given the current state and agent types. Although the transition
function allows agents to have changing types, our current work
assumes that an agent’s type is fixed between entering and leaving
the environment.

Under an OSBG, the game starts by sampling an initial state,
so, and an initial set of agents, Ny, with associated types, 96 with
i € Ny, from a starting distribution Py € A(S X On). At state s,
agents N; C N with types 6%,i € N; exist in the environment and
choose their actions ai by sampling from rg,. As a consequence
of the selected joint agent-actions, the learner receives a reward
computed through R. Finally, the next state s;4+1 and the next set
of existing agents N;;1 and types are sampled from P given s; and
joint agent-actions.

3.2 Optimal Policy for OSBG

Assuming that i denotes the learning agent, the learning objective
in an OSBG is to estimate the optimal policy defined below:

Definition 1. Let the joint actions and the joint policy of agents
other than i at time ¢ be denoted by a;i and nt_i, respectively. Given
a discount factor, 0 < y < 1, we define the action-value of policy
7, Q,i(s,a), as:

(o]
t
Ea;'Nﬂi’at—i~”;i’P [Z Y'R(st, ar)
t=0

sozs,af):ai], (1)

which denotes the expected discounted return after the learner
executes a’ at s. A policy, 7"*, is optimal if :

Val,s,al, Qpin(s,a') = Qi (s, a). 2)

Given Q- (s, a), an OSBG is solved by always choosing a’ with
the highest action-value at s.

4 GRAPH-BASED POLICY LEARNING

We introduce the general components of GPL and their respective
role for estimating an OSBG’s optimal policy. We also describe
the neural network architectures and learning procedures used
for implementing each component. A general overview of GPL’s
architecture is provided in Figure 1 while the complete learning
pseudocode is given in Appendix? F.

2 Appendix can be downloaded from http://bit.ly/37F2BJz

/ —)_,Q(a%) .
LST My, 0,0 <
> Qlatsa)

Joint Action Value Model

\
(a7 by Qi (51, ar)
e

RL-Loss

Marginalization

/

Agent 1:
(xtlvut)
Agent 2: \.
(a?,) B
Agent 3: LSTM% 0.q
("E%7ut)

Type Inference Model

Q'L S 7013;
(@) \) (51, af)
\

‘ qCvn(aHSt)
q¢.n (a?|s; —»NLL-Loss
]\/[LP,] qg,n(aﬂst)

Agent Model

Figure 1: Overview of GPL. The joint action value model (red box) and agent model (blue box) receive type vectors produced
by their own type embedding networks (green box), which are parameterized by ap and a; respectively. These type vectors
are processed by the joint-action value and agent model that are parameterized by (f,) and ({,) respectively. The outputs
from the joint action value model and agent model are combined via Equation 7 to compute the action value. Gradients are

not backpropagated through the dashed line.

4.1 Method Overview and Motivation

In an OSBG, agents’ joint actions inherently affect the learner’s
return through the rewards and next states it experiences. A learner
using common value-based RL methods such as Q-Learning [39]
will always update the action-values of the learner’s previous ac-
tion, even if that action had minimal impact towards the observed
reward from an OSBG. In MARL, a similar credit assignment prob-
lem is commonly addressed by using a centralized critic [14, 24]
that disentangles the effects of other agents’ actions to a learner’s
return by estimating a joint-action value function. Inspired by the
importance of joint-action value modeling for credit assignment,
GPL includes a component for joint-action value estimation. The
joint-action value of a policy, Qi (s, a), is defined as:

(o)
Ea%”i’a;un_i’lg [Z Y'R(st,ar) | s0 = s, a0 = a]. 3)

=0
In contrast to Equation (1), this joint-action value denotes the
learner’s expected return after the joint agent-action a at s. Model-
ing joint-action values prevents the learner from only crediting its
own action if it has minimal contribution towards rewards that it
experienced.

Using a joint-action value model for ad hoc teamwork introduces
problems for training the model and action selection. Due to the
inherent assumption of not knowing other agents’ policies, MARL
methods’ TD error computation for training the joint-action value
model, which assumes other jointly trained agents will follow their
known policies at the next state, cannot be applied in ad hoc team-
work. Furthermore, being optimistic by choosing a’ from the joint
agent-action with maximum value yields suboptimal policies for
ad hoc teamwork since other agents may choose actions that do
not maximize its returns.

To enable joint-action value training and action selection for ad
hoc teamwork, we prove the following Equation:

Q_n'i (St, a;‘) = Eat_i,\,n;i(.lsl,ai,gﬂ-) [Qni (St, a) |ai = a;]’ (4)

in Appendix A to show that GPL’s joint-action value estimates
can be used to compute 07 (sy, ai), which facilitates greedy ac-
tion selection and enables TD error computation for training the
joint-action value model. Since 7, i (at_i s, ai, 0~%) in Equation (4)
is unknown to the learner, it is estimated by GPL’s agent modelling
component described in Section 4.2.

GPL’s last component is the type inference component. In an
OSBG, types affect Q(s, a) and 77 (a~%|s, a’, #7%) by determining
other agent’s immediate and future actions. Estimation of Q(s, a)
and 77 (a"!|s, a’, 0~') must therefore take agent types as input.
However, agent types are unknown and must be inferred from
agents’ observed behavior, which we detail in Section 4.2.

The aforementioned GPL components are finally implemented
using neural networks that facilitate an efficient computation of
O™ (s, a') by imposing a simple factorization of the joint action
value based on coordination graphs [16]. Furthermore, environment
openness is handled by implementing the joint-action value and
agent modeling components with GNNs, which we describe in the
next section. This produces a flexible way of computing 07" (s, a!)
for any team size.

4.2 The GPL Architecture

In this section, we outline the neural network architectures used
for implementing the three components of GPL (cf. Figure 1). This
is followed by a description of the loss functions for training each
component’s neural network.

Type inference: In the absence of knowledge over the inherent
type space of an OSBG, GPL assumes that types can be represented
as fixed-length vectors. Since type inference requires reasoning
over agent’s behavior over an extended period of time, LSTMs [20]
are used for the implementation. The LSTM takes the observation
(ur) and agent-specific information (xg), which are both derived
from s;, to produce a hidden-state vector as an agent’s type em-
bedding. Full details on the computation of type vectors can be

found in Appendix D. GPL uses the type embeddings as input for
the joint action value and agent modeling network. Although the
joint action value and agent modeling feature may use the same
type inference network, separate networks are used to prevent
both model’s gradients from interfering against each other during
training.

Joint action value estimation: The learner’s joint action value
is represented as a fully connected Coordination Graph [16] (CGs).
A fully connected CG factorizes the joint action value as:

Qpolsna) = 3. Qplallsy+ > Q@ dflse). (9)
jEeN; j,keN;
Jj#k

with 0/ (a/|s) and Q/ k(al,aks) being the singular and pairwise
utility terms respectively. The singular and pairwise utility terms
are computed using fully connected networks parameterized by f
and ¢ respectively. When computing a utility term, both networks
receive type embeddings of the learner and agents associated to the
terms as input, which enables each term to model the associated
agent’s contribution towards the learner’s returns. Details on the
computation of the utility terms are provided in Appendix E.

We represent our joint action value as CGs for three reasons.
First, CGs impose a joint action value factorization that facilitates
an efficient action-value computation. We further elaborate the
computational complexity of computing action-values with CGs
when discussing about GPL’s action-value computation. Second,
CGs are implementable as GNNs [10], which makes it a good fit for
handling openness. Third, CG’s value factorization enables GPL to
model the contribution of other agents’ actions towards the returns.
Specifically, Q/ (a/|s) estimates the contribution of agent j while
Qj’k(aj, ak |s) estimates the contribution of agent j and k as a pair.

Agent modeling: GPL uses the Relational Forward Model (RFM)
architecture [9] for agent modeling. RFM are a class of recurrent
graph neural networks that have demonstrated good performance
for agent modeling in open teams. Assuming { denotes its param-
eters, the RFM network receives agent type embeddings, 4, as
its node input to compute a fixed-length embedding, 7, for each
agent. Assuming @’ is the action taken by j in the joint agent-
action a”, we use each agent’s updated embedding to approximate
a7 a7 s,) as:

qq’g(a_i|5, d) ~ l_[Softmax(MLP,;(ﬁj))(aj), 6)
je—i

with 5 being the parameter of an MLP that transforms the updated
agent embeddings. Ngte that we approximat‘e qmg(a’i |s, a’) with a
distribution where a' is independent of a~* given s because in ad
hoc teamwork the learner cannot pre-coordinate its action with
teammates and all agents execute their actions at s simultaneously.
Action value computation: Evaluating Equation (4) can be in-
efficient in larger teams. For instance, a team of k agents which
may choose from n possible actions requires the evaluation of nk
joint-action terms, which number grows exponentially with the
increase in team size. By contrast, a more efficient action-value
computation arises from factorizing the joint action value network
and using RFM-based agent modeling networks. We prove in Ap-
pendix B that substituting the joint-action value and agent models

from Equation (5) and (6) into Equation (4) for action-value compu-
tation enables us to express GPL’s action-value using the following
expression :

O(sp.a') = Q;;(ai|8t)
+) (03(@Ise) + 0 (a'.alls1)) g (@]s1)

al €A j#i (7)

ik j k j k
+)05 (@, ¥ lse)ag (@15 gg (a¥lse).
a’ EAj,ak €Ak, jk#i

Unlike Equation (4), Equation (7) is defined in terms of singular
and pairwise action terms. In this case, the number of terms that
need to be computed only increases quadratically as the team size
increases. The computation of the required terms can be efficiently
done in parallel with existing GNN libraries [38].

Model optimization: As the learner interacts with teammates
during learning, it stores a dataset of states, agents’ actions, and
rewards that it observed. Given a dataset of other agents’ actions
it collected at different states, {(s;, at)}?zl, the agent modeling
network is trained to estimate ﬂ(at_i|st, ai) through supervised
learning by minimizing the negative log likelihood loss defined
below:

Ly = —log(qz,y(a; st at)). (®)

On the other hand, the collected dataset is also used to update
GPL’s joint-action value network using value-based reinforcement
learning. Unlike standard value-based approaches [26], we use the
joint action value as the predicted value. The loss function for the
joint action value network is then defined as:
2

: ©)
with y(ry, st+1) being a target value which computation depends
on the algorithm being used. We subsequently train GPL with Q-
Learning (GPL-Q) [39] and Soft-Policy Iteration (GPL-SPI) [17],
which produces a greedy and stochastic policy respectively. The
target value computations of both methods are defined as the fol-
lowing:

1
Lgs =3 (Qﬂ,é (st.a1) =y (rt,St+1))

yoL (re,se+1) =71e + ymax,i Q (3t+1, al) ,

ysp1 (7, Se41) =i +y ZPSPI(ai|3t+1)Q (3t+1, ai) ,
lZi

where GPL-SPT’s policy uses the Boltzmann distribution,

pspi(ajse) o exp (M) : (10)

with 7 being the temperature parameter.

5 EXPERIMENTAL EVALUATION

In this section, we describe our open ad hoc teamwork experiments
and demonstrate GPL’s performance in them, followed by a detailed
analysis of concepts learned by GPL’s joint action value model.

5.1 Multi-Agent Environments

We conduct experiments in three fully observable multi-agent en-
vironments with different game complexity:

Models | GNN | Agent Model | Joint Action-Value
oL
OL-AM 7
GNN v
GNN-AM v v
GPL-Q v v v
GPL-SPI v v v

Table 1: Types of ablations based on their value network ar-
chitecture and their use of agent modelling.

Level-based foraging (LBF): In LBF [3], agents and objects
with levels [€ {1, 2,3} are spread in a 8 X 8 grid world. The agents’
goal is to collect all objects. Agent actions include actions to move
along the four cardinal directions, stay still, or to collect objects
in adjacent grid locations. An object is collected if the sum of the
levels of all agents involved in collecting at the same time is equal
to or higher than the level of the object. Upon collecting an object,
every agent that collects an object is given a reward equal to the
level of the object. An episode finishes if all available objects are
collected or after 50 timesteps.

Wolfpack: In Wolfpack [23], a team of hunter agents must cap-
ture moving prey in a 10 X 10 grid world. Episodes consist of 200
timesteps and prey are trained to avoid capture using DQN [26].
While the agents have full observability of the environment, prey
only observe a limited patch of grid cells ahead of them. Agents in
this environment can move along the four cardinal directions or
stay still at their current location. To capture a prey, at least two
hunters must form a pack by where every pack members is located
next to a prey’s grid location. Every hunter in a pack that captured
a prey is given a reward of two times the size of the capturing pack.
However, we penalize agents by -0.5 for positioning themselves
next to a prey without teammates positioned in other adjacent grids
from the prey. Prey are respawned after they are captured.

FortAttack: FortAttack [13] is situated on a two-dimensional
plane where a team of attackers aim to reach a region, which we
refer to as the fort, defended by defenders whose aim is to prevent
any attackers from reaching the fort. Our learning agent assumes
the role of a defender. Agents are equipped with actions to move
along the four cardinal directions, rotate, and shoot any opposing
team members located in a triangular shooting range defined by
the agent’s angular orientation and location. An episode ends when
either an attacker reaches the fort, the learner is shot by attackers,
or 200 timesteps have elapsed. The learner receives a reward of -3
for getting destroyed and 3 for destroying an attacker. On the other
hand, a reward of -10 is given when an attacker reaches the fort
and a reward of 10 when guards manage to defend the fort for 200
timesteps. A cost of -0.1 is also given for shooting.

5.2 Baselines

We design different learners, which can be categorized into single-
agent value-based RL and MARL-based learners, to compare against
GPL. Note that baselines that do not use GNNs require fixed-length
inputs. To enable these approaches to handle changing number of
agents in their observations, we impose an upper limit on the num-
ber of agents in the environment and preprocess the observation to

ensure a fixed-length input by adding placeholder values. Details
of this preprocessing method is provided in Appendix G.2.

Single-agent RL baselines: In line with GPL, all baselines are
trained with synchronous Q-learning [25] and take as input the
type vectors from the type inference network, but differ in their
action-value computation and their use of an agent model. QL
takes the concatenation of type vectors as input into a feedforward
network to estimate action values. GNN applies multi-head atten-
tion [22] to the type vectors and predicts action values based on
the learner’s node embedding. The agent model used by QL-AM
and GNN-AM is identical in architecture and training procedure to
GPL’s agent model. However, the predicted action probabilities are
concatenated to the individual agent representations x; as explored
by prior methods [35]. An overview of baselines and their compo-
nents can be found in Table 1. In alignment to the work of Huang
et al. [21], comparing methods with and without GNNs will enable
us to investigate the advantage GNNs provide in training and gen-
eralization performance. On the other hand, the different ways GPL
and baselines use action probabilities will also provide insight on
how GPL’s method of combining action probabilities to compute
action values compares to prior methods.

MARL baselines: While in principle our ad hoc teamwork set-
ting precludes joint training of agents via MARL (we only control
a single learner agent and may also not know rewards of other
agents), we use MARL approaches by assuming that (during train-
ing) we control all teammates and all teammates are using the
same reward function as the learner. We compare with two MARL
algorithms: MADDPG [24] and DGN [22]. MADDPG is a MARL
algorithm for closed environments, while DGN is a GNN-based
MARL approach designed for joint training in open environments.
For evaluation in open ad hoc teamwork, after MARL training com-
pletes, we select one of the jointly trained agents and measure its
performance when interacting with the teammate types used in
our ad hoc teamwork settings (see Sec. 5.3).

5.3 Experimental Setup

We construct environments for open ad hoc teamwork by creating
a diverse set of teammate types for each environment. Agent types
are designed such that a learner must adapt its policy to achieve
optimal return when interacting with the different types. In LBF
and Wolfpack, each type’s policy is implemented either via different
heuristics or reinforcement learning-based policies. We vary the
teammate policies in terms of their efficiency in executing a task
and their roles in a team. Further details of the teammate policies
and diversity analysis for Wolfpack and LBF are provided in Appen-
dix C.4. We use pretrained policies provided by Deka and Sycara
[13] for FortAttack.

In our experiments, openness is simulated by creating an open
process that determines how agents enter and leave during episodes,
for both training and testing. To demonstrate GPL’s ability to solve
open ad hoc teamwork across different open processes, we utilize
these two open processes in our experiments :

Open process with changing team sizes. In LBF and Wolf-
pack, this type of open process determines the number of timesteps
an agent can exist in the environment by uniformly sampling from
a certain range of integers. After staying for the predetermined

number of timesteps, agents are removed from the environment by
the open process. For FortAttack, agents are removed once they are
shot by opponents. After being removed, agents can reenter the en-
vironment after a specific period of waiting time. This open process
also determines the type of an agent entering an environment by
uniformly sampling from all available types. Further details of the
open process for each environments are provided in Appendix G.1.

To evaluate generalization capability in terms of number of
agents, this open process impose different limits to the maximum
team size for training and testing. For testing, we increase the upper
limit on team size to expose the learner against team configurations
it has never encountered before. Specifically, in all environments
we set the maximum team size to 3 agents during training while
increasing it to 5 agents during testing. Note that for FortAttack
where there are two teams competing against each other, this team
size restriction applies for both the attacking and defending team.

Open process with fixed team sizes. We also demonstrate
GPL’s performance in an open process where the team always
consists of two agents. In LBF and Wolfpack, this open process
decides the type of the learner’s teammate by uniformly sampling
from all available types at the start of the episode. Once the episode
starts, the teammate is never removed while no new teammates are
introduced to the environment. Similar to LBF and Wolfpack, the
type of the learner’s teammate and the two opposing attackers in
FortAttack are decided by uniformly sampling from all available
types at the start of the episode. Once an agent is shot by the
opposition, it will immediately be reintroduced to the environment
in the next time step. Hence, under this open process the type and
number of agents will never change in the middle of an episode
for FortAttack. Like the evaluation for the previous open process,
evaluation is done by increasing the team size at the start of the
episode. However, the type and number of teammates will remain
fixed even during evaluation.

5.4 Open Ad Hoc Teamwork Results

Figure 2 shows the training performance of GPL-Q, GPL-SPI, and the
baselines. This figure shows that MARL-based approaches produce
similar or worse performance than our worst performing single-
agent RL baseline during training. While MARL policies performs
better alongside other jointly trained agents, it generalizes poorly
against the ad hoc teamwork teammates that cannot be jointly
trained with MARL. For completeness, we show MARL learner’s
improved performance when interacting with other jointly trained
agents in Appendix H.

Figure 2 also shows that GPL-based approaches significantly
outperform other baselines that use agent models, such as QL-AM
and GNN-AM, in terms of training performance. Despite both being
based on GNNs, GPL outperforming GNN-AM highlights GPL’s
action-value computation method over GNN-AM. As further in-
dicated by the similarity in performance between QL/QL-AM or
GNN/GNN-AM, concatenating action probabilities towards obser-
vations also does not improve training performance in most cases,
which aligns with previous results from Grover et al. [15] and Tac-
chetti et al. [35]. The reason GPL significantly outperforms others
in training is because the joint-action model learns to disentangle

the effects of other agents’ actions, which we will further elaborate
in Section 5.5.

The generalization performance of GPL and baselines are pro-
vided by Table 2. The way GPL-Q, GPL-SPI, GNN-QL and GNN-QL-
AM outperform other baselines in generalization for LBF despite
having similar training performances shows that GNNs are impor-
tant components for generalizing between different open processes.
Furthermore, GPL-Q and GPL-SPI outperforming GNN-QL-AM’s
generalization capability shows that using agent models for action-
value computation using Equation (7) also plays a role in improving
generalization capability between open processes. In QL-AM and
GNN-AM, the value networks must learn a model that integrates
the predicted action probabilities to compute good action-value
estimates, which may not generalize well to teams with previously
unseen sizes. By contrast, GPL uses predicted action probabilities
as weights in its action-value computation following Equation (7),
which is proven in Appendix B to be correct for any team size.

To further demonstrate GPL’s superior performance for open
ad hoc teamwork, we finally compare GPL-Q’s performance to the
single-agent RL baselines in the open process with fixed team sizes
mentioned in Section 5.3. GPL-SPI is omitted from this comparison
since its performance is similar to GPL-Q in all environments under
open processes where the team size changes. On the other hand,
MARL baselines are excluded from this analysis since the single-
agent RL baselines perform better than them under the previous
open process. From Figure 3, we observed similar findings to what
we observed in Figure 2 and Table 2. GPL still outperforms the single-
agent RL baselines in terms of training performance. Furthermore,
GPL-Q, GNN-AM, and GNN also outperforms baselines that are
not equipped with GNNs in terms of generalization.

5.5 Joint Action Value Analysis

We investigate how the joint action value model enables GPL-Q
to significantly outperform the single-agent RL baselines during
training in FortAttack, which is our most complex environment.
For completeness, a similar analysis for Wolfpack is provided in
Appendix J.

When comparing the resulting behavior from learning with GPL-
Q and baselines, Figure 4a shows that GPL-Q’s shooting accuracy
improves at a faster rate than baselines and eventually converges at
a higher value. Investigating the way GPL components encourage
faster and better shooting performance may therefore highlight
the reason why GPL-based approaches outperform the baselines.
We specifically investigate the joint-action value model by defining
several shooting-related metrics derived from GPL’s CG, average
their values over 480000 sample states gathered at different training
checkpoints, and measure their correlation coefficient with GPL’s
average return. Among all metrics, the highest Pearson correlation
coefficient of 0.85 is attained by O .k when j is a defender and k is
an attacker in j’s shooting range. 0 .k is specifically defined as :

Sar 04" (@l = shoot, a¥5)
Qjk = .

| (11)

This metric is derived from GPL’s pairwise utility terms and can be
viewed as GPL’s estimate of agent j’s average contribution towards
the learner when j decides to shoot k, averaged over all possible

Average Training Return in LBF Average Training Return in Wolfpack Average Training Return in FortAttack

IS

|
e
3
3
a

—— GNN-RFM
MADDPG
— ooN

3

— Do

Average Return per Episode
N

Average Return per Episode

Average Return per Episode
@

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 20 40 60 80 100
Total Steps (x160000) Total Steps (x160000) Total Steps (x160000)

(a) Results in Level-based foraging (b) Results in Wolfpack (c) Results in FortAttack
Figure 2: Open ad hoc teamwork results (training): Average and 95% confidence bounds of GPL & baseline returns during
training (up to 3 agents in a team for LBF, Wolfpack, and attacker & defender teams in FortAttack). For each algorithm, training

is done using eight different seeds and the resulting models are saved and evaluated every 160000 global steps.

, Algorithm GPL-Q GPL-SPI oL QL-AM GNN | GNN-AM | MADDPG DGN
Environment
LBF 2.32+0.22 2.40+0.16* 1.41+0.14 1.22+0.29 2.07+0.13 1.80+0.11 0.64 £ 0.90 0.91 £ 0.10
Wolfpack 36.36=1.71" | 37.61+1.69" | 20.57+1.95 | 14.24+2.65 | 8.88+1.57 | 30.87£0.95 | 2.18 + 0.66 | 19.20 + 2.22
FortAttack 14.20+2.42° | 16.82+1.92" | -3.51£0.60 | -3.51=1.51 | 7.01£1.63 | 8.12£0.74 | -5.08 + 0.82 | -4.83 = 1.24

Table 2: Open ad hoc teamwork results (testing): Average and 95% confidence bounds of GPL and baselines during testing (up
to 5 agents in a team for LBF, Wolfpack, and attacker & defender teams in FortAttack). For each algorithm, data was gathered
by running the greedy policy resulting from the eight value networks stored at the checkpoint which achieved the highest
average performance during training. The asterisk indicates significant difference in returns compared to the single-agent RL

baselines.
: m m h, L

Team size during evaluation Team size during evaluation

GPL-Q

GNN-AM 20
GNN
QL-AM
QL 20
10
h “+
2 3 z 5 -

5

NN @
8 8 8

o

Average reward
3

Average reward
o &
Average reward

o

2
Team size during evaluation

(a) Results in level-based foraging (b) Results in Wolfpack (c) Results in FortAttack

Figure 3: Team size generalization results: Average rewards and 95% confidence bounds of GPL and baselines from team size
generalization experiments collected over eight seeds. Agent was trained to interact in a team of two agents for LBF, Wolfpack,
and FortAttack. With FortAttack, we used a setup where the number of attackers was always equal to the number of teammate
defenders. Value networks are stored every 160000 steps and the performance of greedy policies from value networks stored
at the checkpoint with the highest average performance during training were used to compute the average returns and their
95% confidence interval. This result shows that GPL-Q still outperforms other single-agent RL baselines, except for LBF where
its performance is not significantly different from GNN and GNN-AM.

aF. Therefore, GPL-Q’s return strongly correlates with the pairwise
utility terms computed by MLPg of the joint-action value model

difficult to do when the learner is exploring since it requires the
learner to position itself at the right distance and orientation from

when a defender chooses to shoot an attacker inside its shooting
range.

Unlike GPL that is equipped with a pairwise utility model (MLPy),
learning to shoot with the single-agent RL baselines requires in-
creasing the value network’s estimate on shooting when an attacker
ventures inside the learner’s shooting range. However, this can be

an attacker. Even if the learner manages to get to the right distance
from an attacker, a trained attacker can shoot a suboptimal learner
instead if it does not orient itself properly or if it does not shoot
the attacker first.

We now highlight how MLPj is the primary reason behind GPL-
based learner’s ability to learn shooting faster. Consider the case

Average Shooting Accuracy in FortAttack during Testing

Mean @, from Pairwise Utility Terms

=

©

-10

-15

Mean of §j,

—— 1) In defender shooing range

20— 2) Notin defender shooting range.
— 3)In attacker shooting range
—— 4)Notn attacker shooting range
— Retums

-25

Average Shooting Accuracy per Episode

-30

°

0 20 40 60 80 100
Checkpoint

60
Checkpoint

(a) Shooting accuracy in FortAttack (b) Evolution of shooting metrics derived from GPL’s pairwise utilites.
Figure 4: Shooting-related metrics for FortAttack: (a) For GPL-Q and the baselines, we measure the percentage of times the
learner successfully shot an attacker at each checkpoint during FortAttack training (cf. Section 5.3). (b) We measure Q i ks
which is a metric derived from GPL-Q’s pairwise utility terms that represents GPL-Q’s estimate of the contribution towards
the returns resulting from agent j shooting an opponent agent, k. Each line in the plot corresponds to a different scenario in
which the pairwise utility term is measured. Lines 1 and 2 represent Q0 ;k when j is a defender and k is an attacker inside (1)
or outside (2) j’s shooting range. Lines 3 and 4 contrast the value of 0 jk when j is an attacker and k is a defender inside (3)
or outside (4) j’s shooting range. To provide an example pairwise interaction where O .k is computed from for each line, we
visualize four sample pairwise interactions in FortAttack (white line in black boxes). Each black box is numbered after the
line plot it corresponds to. The fort is represented by the blue half circle, attackers by red circles, defenders by green circles,
the learner is marked with a white dot, and shooting ranges are indicated with dashed view cones. The matrices represent
the joint action space for an attacker and defender, where the yellow marked fields refer to the actions that are averaged over
to compute Q ;. k shown in the middle plot. This figure shows that the learner becomes increasingly aware of the benefits of
shooting attackers inside a defender’s shooting range and the negative consequences of a defender approaching an attacker’s
shooting range as training progresses, which causes GPL-Q’s strong performance.

of increasing the pairwise utility terms associated to shooting at-
tackers inside a defender’s shooting range. For a learner equipped
with MLPyg, this can be done using value-based learning once the
learner observes a defender successfully shooting an attacker. The
learner will increase the joint-action value associated to shooting
through bootstrapping once it sees many examples where success-
fully shooting attackers results in advantageous states where the
attacker is removed from the environment. When the teammate
defenders are well-trained, instances of successful shots from team-
mates occurs more frequently than instances with successful shots
from a learner under exploration. Therefore, the joint-action value
associated to shooting is more often increased than the baselines’
action-value of shooting.

Increasing the aforementioned shooting-related pairwise utility
terms indirectly encourages the learner to shoot attackers. Once
MLPg increases its pairwise utility terms associated with shooting
attackers inside a defender’s shooting range, MLPgs will also in-
crease the shooting-related pairwise utility terms when an attacker
is inside the learner’s shooting range. This happens due to applying
the same pairwise utility model to any two agents and the fact that
the learner itself is a defender. The learner is eventually encouraged
to get attackers inside its shooting range and shoot more, which
yields the strong performances we see from GPL-Q and GPL-SPIL.

Aside from learning the value of shooting attackers inside a de-
fender’s shooting range, Figure 4b also shows that MLPg learns to
associate negative values when defenders enter an attacker’s shoot-
ing range. Using the aforementioned mechanism, this enables the
learner to learn to avoid the shooting range of attackers. Therefore,
GPL’s MLPg indirectly enables the learner to acquire useful skills

demonstrated by other agents in FortAttack. We show in Appen-
dix K that baselines that are not equipped with a joint action value
model are not be able to learn how to shoot attackers. This leads
to their significantly worse performances compared to GPL-based
methods.

6 CONCLUSION

This work addresses the challenging problem of open ad hoc team-
work, in which the goal is to design an autonomous agent capable
of robust teamwork under dynamically changing team composition
without pre-coordination mechanisms such as joint training. Our
proposed algorithm GPL uses coordination graphs to learn joint
action-value functions that model the effects of other agents’ ac-
tions towards the learning agent’s returns, along with a GNN-based
model trained to predict actions of other teammates. We empirically
tested our approach in three multi-agent environments showing
that our learned policies can robustly adapt to dynamically chang-
ing teams. We empirically show that GPL’s success can be attributed
to its ability to learn meaningful concepts to explain the effects of
other agents’ actions on the learning agent’s returns. This enables
GPL to produce action-values that lead to significantly better train-
ing and generalization performances than various baselines. An
interesting direction for future work is to automatically learn the
appropriate value factorization from observations to handle situa-
tions in which the inherent return structure does not follow CG’s
factorization method. Furthermore, extensions to environments
with partial observability and/or continuous actions are another
direction.

REFERENCES

(1]

[2

—

[7

[

8

=

[10]
(1]

[12]

[17]

[20]

[21]

[22]

[23]

[24]

Noa Agmon and Peter Stone. 2012. Leading ad hoc agents in joint action settings
with multiple teammates.. In AAMAS. 341-348.

Stefano V Albrecht, Jacob W Crandall, and Subramanian Ramamoorthy. 2016.
Belief and truth in hypothesised behaviours. Artificial Intelligence 235 (2016),
63-94.

Stefano V. Albrecht and Subramanian Ramamoorthy. 2013. A game-theoretic
model and best-response learning method for ad hoc coordination in multiagent
systems. In Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-Agent Systems. 1155-1156.

Stefano V. Albrecht and Peter Stone. 2017. Reasoning about Hypothetical Agent
Behaviours and their Parameters. In Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems. 547-555.

Stefano V Albrecht and Peter Stone. 2018. Autonomous agents modelling other
agents: A comprehensive survey and open problems. Artificial Intelligence 258
(2018), 66-95.

Samuel Barrett, Avi Rosenfeld, Sarit Kraus, and Peter Stone. 2017. Making friends
on the fly: Cooperating with new teammates. Artificial Intelligence 242 (2017),
132-171.

Samuel Barrett and Peter Stone. 2015. Cooperating with Unknown Teammates
in Complex Domains: A Robot Soccer Case Study of Ad Hoc Teamwork. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (Austin,
Texas, USA).

Samuel Barrett, Peter Stone, and Sarit Kraus. 2011. Empirical Evaluation of Ad
Hoc Teamwork in the Pursuit Domain. In Proc. of 11th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS) (Taipei, Taiwan).

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, Caglar Giilgehre, H. Francis Song, Andrew J.
Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charles
Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet
Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. 2018.
Relational inductive biases, deep learning, and graph networks. CoRR (2018).
Wendelin Bhmer, Vitaly Kurin, and Shimon Whiteson. 2019. Deep Coordination
Graphs. CoRR (2019).

Shuo Chen, Ewa Andrejczuk, Zhiguang Cao, and Jie Zhang. 2020. AATEAM:
Achieving the Ad Hoc Teamwork by Employing the Attention Mechanism. In
AAAIL 7095-7102.

Filippos Christianos, Lukas Schifer, and Stefano V. Albrecht. 2020. Shared Expe-
rience Actor-Critic for Multi-Agent Reinforcement Learning. In 34th Conference
on Neural Information Processing Systems.

Ankur Deka and Katia Sycara. 2020. Natural Emergence of Heterogeneous Strate-
gies in Artificially Intelligent Competitive Teams. arXiv preprint arXiv:2007.03102
(2020).

JN Foerster, G Farquhar, T Afouras, N Nardelli, and SA Whiteson. 2018. Counter-
factual Multi-agent Policy Gradient. 2974-2982.

Aditya Grover, Maruan Al-Shedivat, Jayesh Gupta, Yuri Burda, and Harrison
Edwards. 2018. Learning Policy Representations in Multiagent Systems. In
International Conference on Machine Learning. 1802-1811.

Carlos Guestrin, Michail G Lagoudakis, and Ronald Parr. 2002. Coordinated
reinforcement learning. In Proceedings of the Nineteenth International Conference
on Machine Learning. 227-234.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. arXiv preprint arXiv:1801.01290 (2018).

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024-1034.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. 2016. Opponent
modeling in deep reinforcement learning. In International Conference on Machine
Learning. 1804-1813.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Wenlong Huang, Igor Mordatch, and Deepak Pathak. 2020. One policy to control
them all: Shared modular policies for agent-agnostic control. In International
Conference on Machine Learning. PMLR, 4455-4464.

Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. 2019. Graph Convo-
lutional Reinforcement Learning. In International Conference on Learning Repre-
sentations.

Joel Z. Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Grae-
pel. 2017. Multi-agent reinforcement learning in sequential social dilemmas. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems.
464-473.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor
Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in neural information processing systems. 6379-6390.

[25

[26

[27

[29

[30

[31

%
&,

[33

[34

[35

&
2

w
&,

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning. 1928-1937.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529-533.

Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V Al-
brecht. 2019. Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement
Learning. arXiv preprint arXiv:1906.04737 (2019).

Neil C. Rabinowitz, Frank Perbet, H. Francis Song, Chiyuan Zhang, S. M. Ali
Eslami, and Matthew Botvinick. 2018. Machine theory of mind. In Proceedings of
the 35th International Conference on Machine Learning. 4215-4224.

Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. 2018. Modeling
others using oneself in multi-agent reinforcement learning. In Proceedings of the
35th International Conference on Machine Learning. 4254-4263.

Tabish Rashid, Mikayel Samvelyan, Christian Schroder de Witt, Gregory Farquhar,
Jakob N. Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic value function
factorisation for deep multi-agent reinforcement learning. In Proceedings of the
35th International Conference on Machine Learning. 4292-4301.

Manish Ravula, Shani Alkobi, and Peter Stone. 2019. Ad hoc Teamwork with Be-
havior Switching Agents. In International Joint Conference on Artificial Intelligence
(IJCAI) (Macau, China).

Peter Stone, Gal A Kaminka, Sarit Kraus, Jeffrey S Rosenschein, et al. 2010. Ad
Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination.. In
AAAL 6.

Peter Stone, Gal A Kaminka, and Jeffrey S Rosenschein. 2009. Leading a best-
response teammate in an ad hoc team. In Agent-mediated electronic commerce.
Designing trading strategies and mechanisms for electronic markets. Springer,
132-146.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z.
Leibo, Karl Tuyls, and Thore Graepel. 2018. Value-Decomposition Networks For
Cooperative Multi-Agent Learning Based On Team Reward. In Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent Systems.
2085-2087.

Andrea Tacchetti, H. Francis Song, Pedro A. M. Mediano, Vinicius Flores Zam-
baldi, Janos Kramar, Neil C. Rabinowitz, Thore Graepel, Matthew Botvinick, and
Peter W. Battaglia. 2019. Relational forward models for multi-agent learning. In
7th International Conference on Learning Representations.

Milind Tambe. 1997. Towards flexible teamwork. Journal of Artificial Intelligence
Research 7 (1997), 83-124.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Kor-
jus, Juhan Aru, Jaan Aru, and Raul Vicente. 2017. Multiagent cooperation and
competition with deep reinforcement learning. PloS one 12, 4 (2017).

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,
Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin
Lin, Junbo Zhao, Jinyang Li, Alexander J Smola, and Zheng Zhang. 2019. Deep
Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. ICLR
Workshop on Representation Learning on Graphs and Manifolds (2019).
Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279-292

Ming Zhou, Yong Chen, Ying Wen, Yaodong Yang, Yufeng Su, Weinan Zhang,
Dell Zhang, and Jun Wang. 2019. Factorized Q-learning for large-scale multi-
agent systems. In Proceedings of the First International Conference on Distributed
Artificial Intelligence. 1-7.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Open Stochastic Bayesian Games (OSBG)
	3.2 Optimal Policy for OSBG

	4 Graph-based Policy Learning
	4.1 Method Overview and Motivation
	4.2 The GPL Architecture

	5 Experimental Evaluation
	5.1 Multi-Agent Environments
	5.2 Baselines
	5.3 Experimental Setup
	5.4 Open Ad Hoc Teamwork Results
	5.5 Joint Action Value Analysis

	6 Conclusion
	References

