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ABSTRACT
Reinforcement Learning usually does not scale up well to large
problems. It typically takes a Reinforcement Learning agent many
trials until it can reach a satisfying policy. A main contributing fac-
tor to this problem is the fact that Reinforcement Learning is often
used for learning exclusively by means of trial and error. There has
been much work that addresses incorporating domain knowledge
in Reinforcement Learning to allow more efficient learning. Reward
shaping is a well-established method to incorporate domain knowl-
edge in Reinforcement Learning by providing the learning agent
with a supplementary reward. In this work we propose a novel
methodology that automatically generates reward shaping func-
tions from user-provided Linear Temporal Logic formulas. Linear
Temporal Logic in our work serves as a rich, yet compact, lan-
guage that allows the user to express the domain knowledge with
minimum effort. Linear Temporal Logic is also rather easy to be
expressed in natural language which makes it easier for non-expert
users. We use the flag collection domain to demonstrate empirically
the increase in both the convergence speed and the quality of the
learned policy despite the minimum domain knowledge provided.

KEYWORDS
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1 INTRODUCTION
Most of the current research in Reinforcement Learning (RL) as-
sumes that the learning starts from a blank slate and improves only
by means of trial and error. This learning approach takes a huge
amount of trials until the learning agent can reach a satisfying
policy. This amount of trials is prohibitively expensive in many
scenarios.

Reward shaping is a well-established method to incorporate
domain knowledge in the RL agents. In reward shaping, the domain
knowledge is represented as a supplementary reward that allows
the RL agent to learn more efficiently. Representing the reward
shaping functions as a difference between potential functions, as
described in [10], provides the guarantee that the optimal policy

does not change. The policy invariance guarantee holds in both
cases of static [10] and dynamic potentials [3].

In this work, the domain knowledge is incorporated in the RL
agent through Linear Temporal Logic on finite traces (LTLf ) formu-
las. The LTLf formulas are then used to generate potential-based
reward shaping (PBRS) functions to provide the agent with an
additional reward which in turn allows more efficient learning.
Incorporating the domain knowledge in the RL agent as reward
shaping functions makes our method applicable to a broad range
of both model-based and model-free RL algorithms. In addition,
PBRS provides the policy invariance guarantee which means that
our method is guaranteed to preserve the optimal policy [3, 10].

This paper presents a novel methodology that automatically
generates PBRS functions from user-provided LTLf formulas which
provide a flexible and user-friendly way to incorporate domain
knowledge in the RL agents.

2 RELATEDWORK
LTL has been widely used as a task specification language in a vari-
ety of fields [7–9]. The agent in this case has to satisfy constraints
provided to it through LTL formulas. This results in a reduction in
the policy space which may lead to discarding optimal policies in
case of inaccurate constraints. On the contrary, in our work, we
use LTLf to generate PBRS functions that are guaranteed not to
change the optimal policy.

Reward shaping, when used properly, is a powerful tool to help
an RL agent to reach a satisfying policy faster. It has been shown that
if the reward shaping is used incorrectly, even with good intentions,
it can change the optimal policy of the task e.g [12]. In [10], the
authors investigate the conditions under which the optimal policy
is preserved with reward shaping. The authors conclude that it is
both sufficient and necessary to have the reward shaping function
as the difference between values of a static potential function.

We use in this work potential functions that generally change
over time (dynamic potential functions). The authors of [3] extend
the proofs of the policy invariance to the case of dynamic potential
functions. They proved that the potential functions can change
during the learning while preserving the optimal policy, given the



condition that the potential of the states is evaluated at the time
they were visited.

The domain knowledge in our work is generated manually but
the conversion to reward shaping functions is automatic (called
semi-automaticmethod). In [4], the authors propose a semi-automatic
reward shaping method that generates PBRS functions from STRIPS
plans. The authors demonstrate their method on the challenging
flag collection domain where a vanilla RL agent (without reward
shaping) can easily get stuck in a sub-optimal policy.

To the best of our knowledge, [6] is the only work that uses
LTLf to bias the RL agent’s exploration. The authors use heuristics
generated from LTLf formulas to guide the agent’s exploration in a
variant of Rmax. Our work is highly motivated by their findings. We
propose the use of LTLf to automatically generate PBRS functions
which makes our method more advantageous in two main ways:

• Using reward shaping makes our method applicable to many
model-free and model-based RL algorithms.

• Our method utilizes the temporal aspect of LTLf by using
different reward shaping functions at different stages of sat-
isfaction of the LTLf formulas.

3 BACKGROUND
3.1 Reinforcement Learning and Markov

Decision Processes
Markov Decision Processes (MDPs) [1] are used to formalize the
problem of sequential decision making. AnMDP can be represented
as a tuple (𝑆,𝐴, 𝛿, 𝑅,𝛾): 𝑆 is the set of states , 𝐴 is the set of actions,
𝛿 (𝑆,𝐴|𝑆 ′) is the transition function, 𝑅 is the reward function and
𝛾 is the discount factor. In MDPs, the agent interacts with the
environment by executing an action 𝑎 in a state 𝑠 then makes the
transition to next state 𝑠 ′ according to the transition function 𝛿

and receives a scalar reward 𝑟 ∈ IR. MDPs are used in this work to
formalize the problem of RL. The RL agent should learn a policy
𝜋 (𝑎 |𝑠) to maximize the cumulative discounted reward, where the
policy is a probabilistic function that defines the probability of
selecting an action 𝑎 at a given state 𝑠 . The cumulative discounted
reward is the expectation of the sum of the discounted rewards the
agent receives E[𝑟1 + 𝛾𝑟2 + 𝛾2𝑟3 + . . . ].

3.2 Potential-based Reward Shaping
Reward shaping is a well-established method that allows the RL
agent to learn more efficiently. Reward shaping works by provid-
ing the RL agent with a supplementary reward 𝐹 (𝑠, 𝑎, 𝑠 ′). So the
augmented reward function of the MDP becomes

𝑅′(𝑠, 𝑎, 𝑠 ′) = 𝐹 (𝑠, 𝑎, 𝑠 ′) + 𝑅(𝑠, 𝑎, 𝑠 ′) (3.1)

However, reward shaping can sometimes change the optimal policy.
PBRS represents the reward shaping function as the difference of
values of a potential function, formally as the following

𝐹 (𝑠, 𝑎, 𝑠 ′) = 𝛾Φ(𝑠 ′) − Φ(𝑠) (3.2)

The reward function in this form is both sufficient and necessary
to guarantee policy invariance [10].

The PBRS functions can also be dynamic i.e., change during
the learning process. Policy invariance is preserved if the reward

shaping function is given in the following form

𝐹 (𝑠, 𝑡, 𝑠 ′, 𝑡 ′) = 𝛾Φ(𝑠 ′, 𝑡 ′) − Φ(𝑠, 𝑡) (3.3)

where 𝑡 is when the agent visited state 𝑠 , and 𝑡 ′ is when the agent
visited state 𝑠 ′ [3].

3.3 Linear Temporal Logic
Linear Temporal Logic (LTL) [11] is a type of temporal logic that
allows expressing and reasoning over propositions qualified in
terms of time. LTL is a modal temporal logic with an expressive
and reasoning power limited to timelines. Since we assume finite
horizon RL in this work, we utilize LTL formulas interpreted over
finite traces (LTLf ). An LTL formula is composed of a finite set of
propositional symbols P, logical connectives ¬, ∧, ∨ and → and
modal operators𝑋 next and𝑈 until, from which other useful modal
operators can be derived e.g. 𝐺 globally and 𝐹 finally. The modal
operators can have the following meaning: 𝐺 globally: 𝑇𝑟𝑢𝑒 now
and at any time later, 𝐹 finally: will become 𝑇𝑟𝑢𝑒 at some time, 𝑋
next: will become 𝑇𝑟𝑢𝑒 in the next state and 𝑈 until: 𝑇𝑟𝑢𝑒 until
something else becomes 𝑇𝑟𝑢𝑒 .

Any LTL formula 𝑓 can be transformed to a Deterministic Finite
Automaton (DFA) that accepts a trace𝑇 , a sequence of propositional
symbols, only if𝑇 satisfies formula 𝑓 [2]. The DFAs are used in this
work to track the stage of satisfaction of the LTL formulas.

3.4 Deterministic Finite Automaton
A Deterministic Finite Automaton (DFA) [5] is a mathematical
model that deterministically maps an input sequence to an output
so that the computation is unique. A DFA can be exactly in one
state at a given time and it makes the transition from one state
to another state given some input and according to the transition
function. A DFA accepts an input sequence if the sequence drives
the DFA to one of its accepting states. A DFA is defined formally
as a tuple (𝑄,𝑞0,Δ, Σ, 𝐹 ) where 𝑞0 is the initial state, 𝑄 is the set
of states, Δ is the transition function (maps a state and an input
to another state), Σ is the set of possible inputs and 𝐹 is the set of
accepting states.

4 METHODOLOGY
In this work, we utilize LTLf as a means for incorporating domain
knowledge in Reinforcement Learning agents. We use different po-
tential functions at different satisfaction stages of the LTLf formulas
(at different states of the corresponding DFAs).
Three main advantages motivate our use of Linear Temporal Logic
(LTLf ):

• LTLf provides an intuitive and flexible way to describe many
common RL tasks.

• LTLf is a rich language that can validate whole sequences
over time. This makes LTLf a compact language which
means less user effort is needed.

• LTLf is rather easy to be expressed in natural language. This
makes it easier for non-expert users.

We refrain from using more complex forms of Temporal Logics
in our work e.g. time-branching logic and leave this for future work
directions since our main goal in this paper is to demonstrate the



Figure 1: an example of flag collection problem; the start po-
sition (S in red), the flag A (A in black) and the goal position
(G in green).

Figure 2: the corresponding DFA for the LTLf formula
𝐹 (ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴 ∧ 𝑋𝐹𝑎𝑡_𝑔𝑜𝑎𝑙).

potential of using Temporal Logics as a means of guidance for the
RL agent.

4.1 Example Task
We consider a simple flag collection problem (Figure 1) to serve
as a running example to clarify our method. In the flag collection
domain, the agent should learn how to collect all the flags and then
go to the goal position in a minimum number of steps.

4.2 Constructing the LTLf Formulas
The user provides𝑚-LTLf formulas either online (during learning)
or offline (before the learning starts), where 𝑚 is the number of
formulas. To construct the LTLf formulas we first define a finite
set of propositional symbols P. In the example task, we define P =

{ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴, 𝑎𝑡_𝑔𝑜𝑎𝑙} where ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴 is𝑇𝑟𝑢𝑒 iff the agent has
collected flag A and 𝑎𝑡_𝑔𝑜𝑎𝑙 is 𝑇𝑟𝑢𝑒 iff the agent is at the goal
positon. And then we use P together with the propositional and
modal operators discussed in 3.3 to construct the LTLf formulas.

In the example task, we would like to guide the agent to collect
flag A and then go to the goal position. To this end we provide the
agent with the following LTLf formula 𝐹 (ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴∧𝑋𝐹𝑎𝑡_𝑔𝑜𝑎𝑙).
This formula can be expressed in natural language as “Finally collect
flag A and then finally be at the goal position”.

4.3 Transforming LTLf Formulas to
Deterministic Finite Automata

An LTLf formula can be translated to a corresponding DFA such
that the DFA accepts a sequence of states iff the sequence satisfies
the LTLf formula [2]. We therefore transform the user-provided𝑚-
LTLf formulas to𝑚-DFAs in order to track the satisfaction stage of
the corresponding LTLf formulas. The goal is then to push the DFAs
through their edges to their accepting states and thus satisfying
the corresponding LTLf formulas. The LTLf formula we used in
the example task has the corresponding DFA shown in Figure 2.

4.4 Tracking the States of the DFAs
Our method generates potential functions depending on the current
states of the DFAs (which represent the stage of satisfaction of
the LTLf formulas) to guide the agent to push the DFAs to their
accepting states (which means satisfying the corresponding LTLf
formulas). To this end, we define a labeling function 𝐿(𝑆,P) that
associates the truth assignment of each propositional symbol𝐴 ∈ P
to each MDP state 𝑠 ∈ 𝑆 . By using the labeling function 𝐿 we can
now track the current states of the DFAs given the sequence of
truth assignments associated with the MDP states the agent has
visited. Iteratively at each time step 𝑡 we use the truth assignments
associated with the current MDP state 𝐿(𝑠𝑡 , 𝐴) for each 𝐴 ∈ P to
update the states of the DFAs according to their transition functions.

In the example task, the DFA (in Figure 2) is at its initial state𝑞0 at
the beginning of the episode. The DFA will not make a transition to
another state until the agent collects flag A since 𝐿(𝑠𝑡 , ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴)
will then be 𝑇𝑟𝑢𝑒 and the DFA will make the transition to 𝑞1. Then
again the DFA will not make a transition to another state until the
agent reaches the goal position since 𝐿(𝑠𝑡 , 𝑎𝑡_𝑔𝑜𝑎𝑙) will be 𝑇𝑟𝑢𝑒
and the DFA will reach its only accepting state 𝑞2 and thus satisfy
the provided LTLf formula.

4.5 Defining Useful Edges
In order to guide the agent to push the DFAs to their accepting
states, we first define what is called useful edges. We define useful
edges for a DFA as the edges of the current DFA state that lead to
progress towards the DFA accepting states. An edge 𝑒 (𝑞, 𝜙, 𝑞′) of
the current DFA state 𝑞 is a useful edge if the edge leads to a next
DFA state 𝑞′ which has a path to an accepting state and 𝑞 is not
part of this path. We denote the set of useful edges of the ith DFA
at time 𝑡 as𝑈 𝑡

𝑖
.

In the example task, at any time 𝑡 , if the DFA state is𝑞0, then𝑈 𝑡
0 =

{(𝑞0, ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴,𝑞1)}, and if the DFA state is 𝑞1, then𝑈 𝑡
0 = {(𝑞1,

𝑎𝑡_𝑔𝑜𝑎𝑙, 𝑞2)}. And lastly, if the DFA current state is the accepting
state 𝑞2, then𝑈 𝑡

0 is an empty set.

4.6 Domain Knowledge Functions
We will use potential functions that guide the agent to satisfy the
formulas associated with the useful edges. For this we assume that
the agent has a domain knowledge function ℎ𝐴 (𝑆) for each𝐴 ∈ P+,
where P+ = P ∪ {¬𝑝 : 𝑝 ∈ P}, that provides an estimate of the
number of primitive actions needed for 𝐴 to be 𝑇𝑟𝑢𝑒 from any
MDP state 𝑠 ∈ 𝑆 . The estimates which the domain knowledge func-
tions provide can vary widely depending on the domain knowledge
available for the problem at hand.

Using the domain knowledge functions we can define a more
general function ℎ(𝑆, 𝜙) that provides an estimate of the number
of primitive actions needed to satisfy any formula 𝜙 , given that 𝜙
is put in the Disjunctive Normal Form (DNF), which means that 𝜙
is a disjunction of conjunctions. We define the heuristics function
ℎ recursively as the following

ℎ(𝑆,𝐴) = ℎ𝐴 (𝑆), for any 𝐴 ∈ P+

ℎ(𝑆,𝜓 ∧ 𝜒) = 𝑠𝑢𝑚(ℎ(𝑆,𝜓 ), ℎ(𝑆, 𝜒)), for any formulas𝜓 and 𝜒

ℎ(𝑆,𝜓 ∨ 𝜒) = min(ℎ(𝑆,𝜓 ), ℎ(𝑆, 𝜒)), for any formulas𝜓 and 𝜒

(4.1)



In the example task, we can define a domain knowledge func-
tion for each propositional symbol 𝐴 ∈ {ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴, 𝑎𝑡_𝑔𝑜𝑎𝑙,
¬ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴,¬𝑎𝑡_𝑔𝑜𝑎𝑙} as the following

ℎℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴 (𝑠) =


𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑓 𝑙𝑎𝑔𝐴 (𝑝𝑜𝑠 (𝑠)) if 𝐿(𝑠, ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴)

is 𝐹𝑎𝑙𝑠𝑒
0 ; otherwise

(4.2)

ℎ¬ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴 (𝑠) =
{
0 if ℎℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴 (𝑠) ≠ 0
𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑 ; otherwise

(4.3)

ℎ𝑎𝑡_𝑔𝑜𝑎𝑙 (𝑠) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑎𝑡_𝑔𝑜𝑎𝑙 (𝑝𝑜𝑠 (𝑠)) (4.4)

ℎ¬𝑎𝑡_𝑔𝑜𝑎𝑙 (𝑠) =
{
0 if ℎ𝑎𝑡_𝑔𝑜𝑎𝑙 (𝑠) ≠ 0
1 ; otherwise

(4.5)

for each 𝑠 ∈ 𝑆 and where 𝑝𝑜𝑠 (𝑠) returns the position of the agent
at state 𝑠 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑎𝑡_𝑔𝑜𝑎𝑙 are heuristics
functions that return estimate distances e.g. the direct distances
(disregarding the walls) to flag A and the goal position respectively.

The domain knowledge function for satisfying ¬ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴 is
not defined when the agent already has flag A since the agent can
not drop a flag after it is collected in the flag collection domain. We
do not consider in this work misleading guidance, so this function
will never be evaluated in its undefined range.

4.7 Building the Potential Functions
We now define what is called the guiding formula for the ith DFA at
time 𝑡 as the following

𝜙𝑡
𝑔𝑢𝑖𝑑𝑖𝑛𝑔

=
∨

𝑒 (𝑞,𝜙,𝑞′) ∈𝑈 𝑡
𝑖

𝜙 (4.6)

We also define a function 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑄) which returns the length of
the longest acyclic path to an accepting state from DFA state 𝑞 ∈ 𝑄 .
If an accepting state is not reachable from a DFA state 𝑞′, then
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑞′) =𝑚𝑎𝑥 (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑄 − {𝑞′}) + 1. Finally, we define the
potential function at time 𝑡 as the following

Φ𝑡 (𝑠𝑡 ) = −𝜔 ×
[
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑞𝑡 ) +

1
𝑛
× ℎ(𝑠𝑡 , 𝜙𝑡𝑔𝑢𝑖𝑑𝑖𝑛𝑔)

]
(4.7)

where 𝜔 is a scaling factor and 1/𝑛 is a normalization factor where
𝑛 =𝑚𝑎𝑥

(
ℎ(𝑆, 𝜙𝑡

𝑔𝑢𝑖𝑑𝑖𝑛𝑔
)
)
.

4.8 In Case of𝑚-LTLf Formulas
In case of𝑚-LTLf formulas, we define the guiding formula at time
𝑡 as the following

𝜙𝑡
𝑔𝑢𝑖𝑑𝑖𝑛𝑔

=

𝑚∧
𝑖=0

𝜙𝑖𝑡 (4.8)

where 𝜙𝑖𝑡 is the guiding formula of the ith DFA at time 𝑡 . And we
redefine the potential function as the following

Φ𝑡 (𝑠𝑡 ) = −𝜔 ×
[ 𝑚∑
𝑖=0

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑞𝑖𝑡 ) +
1
𝑛
× ℎ(𝑠𝑡 , 𝜙𝑡𝑔𝑢𝑖𝑑𝑖𝑛𝑔)

]
(4.9)

Figure 3: the classic flag collection problem (with added ob-
stacles).

Figure 4: the corresponding DFA for the LTLf formula
𝐹 (ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐶 ∧ (ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐸 ∨ 𝑋𝐹 ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐸)).

5 EXPERIMENTS
We evaluate our method on two different variations of the flag
collection domain. We compare our method performance to that of
the plan-based reward shaping method in [4].

In the flag collection domain, the state is defined by the agent
position and the flags collected by the agent. The agent has 8 ac-
tions that deterministically move it to the adjacent cells (the agent
remains in place in case of a wall or an obstacle in the intended
direction of the executed action). In our experiments, the agent is
punished with a small negative reward of −0.1 at each time step
and receives a positive reward of 100 multiplied by the number of
flags collected only at the end of the episode. In all the experiments
we use the SARSA algorithm with Q-table initialized with zero
values. We use learning rate 𝛼 = 0.1 and discount factor 𝛾 = 1. We
use a scaling factor 𝜔 = 10 for our method and no scaling for the
plan-based method (since it has no significant effect on the method
performance). Each experiment consists of 104 episodes yet we
plot the results for the first 1000 episodes only since they merely
change afterward. We repeat each experiment 10 times and report
the average results. For smoother learning curves we always take
the average of every 10 consecutive episodes.



5.1 Evaluation in the Classic Flag Collection
Domain

In this set of experiments, we consider the flag collection problem
shown in Figure 3. This configuration is the original version used in
[4] with only added obstacles that the agent cannot go through. The
agent should collect all the flags (A-F) and go to the goal position in
the minimum number of steps. In this problem there are more than
one optimal ordering of collecting the flags e.g. (C, E, F, B, A then
D) and (A, B, C, F, E then D) are examples of optimal orderings.

The plan-based method, as described in [4], in this case would
only consider one optimal ordering. Our LTLf -based method in-
stead provides the flexibility for the user to guide the agent to any
optimal ordering. In our experiments we give the agent different
LTLf formulas, each guiding the agent to a different optimal or-
dering and we compare the performance to that of the plan-based
method. We provide the following LTLf formula

𝐹 (ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐶∧𝐹 (ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐸 ∧ . . .

∧ (ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐷 ∨ 𝑋𝐹 ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐷)))))) (5.1)

to help the agent to collect the flags in the following order (C, E,
F, B, A then D), and similar formulas for other optimal orderings.
A guidance formula expressed as in 5.1 would guide the agent to
follow a certain order, but still provides supplementary reward even
if the flags are not collected in this order. Therefore this formula
is more relevant when the user is not completely sure about the
optimal ordering. The corresponding DFA to formula 5.1 cannot
be shown in its entirety due to insufficient space. Nevertheless, we
show the corresponding DFA of a simpler formula similar to 5.1
to provide the intuition. We consider the formula that guides the
agent to collect only the first 2 flags, namely C and E expressed in
LTLf as the following

𝐹 (ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐶 ∧ (ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐸 ∨ 𝑋𝐹 ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐸)) (5.2)

with the corresponding DFA in Figure 4.
In order to build the LTLf formulas, as discussed in 4.2, we need

to define a set of propositional symbols P = {ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐴, . . . ,
ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐹 }. Then we define domain knowledge functions (4.6)
for each propositional symbol 𝐴 ∈ P+. We define the domain
knowledge functions for all the flags in the same way as we did for
flag A in 4.2 and 4.3. We redefine the heuristics function 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴
for all 𝐴 ∈ P to return the distance (disregarding the obstacles but
not the walls) to the corresponding flag. This heuristic knowledge
is available in many applications in the real world where we would
know the main structure of the environment e.g. the room structure
of a floor but not the obstacles e.g. the furniture.

In this set of experiments, we use 𝜖-greedy exploration strategy
with 𝜖 = 0.3 at the start of the episode and linearly decreasing to
0.01. In Figure 5we report the results for plan-based and LTLf -based
method guiding the agent to the same optimal ordering, namely
(C, E, F, B, A then D). LTLf -based method achieved slightly better
performance in both terms of convergence speed and the final policy
compared to the plan-based method. The LTLf formulas that guide
the agent to other optimal orderings report similar results (although
not reported in Figure 5 for clarity since the learning curves usually
override). The agent with no shaping easily converges to the sub-
optimal policy of picking flag D and then go directly to the goal.

Figure 5: results in the classic flag collection domain.

Figure 6: flag collection problem with uncertainty over
which door (in red) is open.

Figure 7: the corresponding DFA for the LTLf formula
𝐹 ((ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐵 ∧ ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐶) ∧ 𝑋𝐹𝑎𝑡_𝑔𝑜𝑎𝑙)).

5.2 Evaluation in Flag Collection Domain with
an Aspect of Uncertainty

In this set of experiments, we consider the flag collection problem
shown in Figure 6. At each experiment one of the two doors in the
color red can be closed and the other is open. The optimal ordering
of collecting the flags depends on which door is open at the current
experiment. If the (Room C - Room E) door is the one which is open,
the optimal ordering would be to collect flag B first then flag C. And
if (Room B - Room E) door is the one which is open, the optimal
ordering would be to collect flag C first then flag B. We assume
the case that the user who provides the guidance (in our case the



Figure 8: results in the flag collection domain with uncer-
tainty (in case of door (Room B - Room E) is the open door).

LTLf formulas) does not know which door is open at the current
experiment, therefore the user does not know which ordering is
the optimal one.

In this case, we would like to have the flexibility to guide the
agent to collect flag B first then flag C or collect flag C first then
flag B (which means guiding the agent to collect both flags without
pushing for a certain ordering) then go to the goal. To the best of
our knowledge, the plan-based reward shaping method does not
offer such flexibility. In LTLf this can be expressed elegantly by
providing the following formula

𝐹 ((ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐵 ∧ ℎ𝑎𝑣𝑒_𝑓 𝑙𝑎𝑔𝐶) ∧ 𝑋𝐹𝑎𝑡_𝑔𝑜𝑎𝑙)) (5.3)

which can be expressed in natural language as “Finally collect flag
B and flag C, and then go to the goal” (with the corresponding DFA
in Figure 7). Although the previous formula guides the agent to
collect both flags, it clearly does not recommend a certain order to
collect them. The reward shaping functions that the previous LTLf
formula generates will not bias the agent in any way to collect one
of the flags before the other one.

It is worth mentioning that in our experiments we assume that
the domain knowledge functions would report the correct estimates
depending on which door is open. Although this assumption re-
stricts the flexibility we would like to have, this flexibility is still
useful in cases where the user does not know which door is open
but the agent has this knowledge. We can remove this assumption
if the agent is capable to identify the situation and switch between
two different sets of domain knowledge functions (or even learn
them) depending on the situation .

In this set of experiments we use both 𝜖-greedy and softmax
exploration strategies with LTLf -based reward shaping, and we
also compare to the performance of no shaping. We use a constant
temperature 𝑇 = 0.3 for softmax, and we use the same values for 𝜖
as in the first set of experiments for the 𝜖-greedy.

In Figure 8 we report the results for the case in which the (Room
B - Room E) door is the open door. The 𝜖-greedy strategy could
not converge even once to the optimal ordering (flag C then flag
B), while the softmax strategy always converged to the optimal
ordering. These results support our initial anticipation that the
softmax strategy would do more efficient exploration for two (or
more) potentially optimal solutions. We expect the differences in

Figure 9: results in the flag collection domain with uncer-
tainty (in case of door (Room C - Room E) is the open door).

performance to be evenmore profound as wemove tomore complex
settings. We also report the results for the case in which the (Room
C - Room E) is the open door in Figure 9. In this case, both 𝜖-greedy
and softmax could converge to the optimal ordering (flag B then flag
C) in all the experiments. The agent with no shaping, as expected,
always converges to the sub-optimal policy of collecting one flag
and then going directly to the goal.

6 CONCLUSION
In this paper, we introduced a novel methodology to incorporate
domain knowledge in RL agents. We used LTLf to automatically
generate reward shaping functions to allow for more efficient learn-
ing. Our method is applicable to many RL algorithms and provides
benefits over previous works in terms of specifying domain knowl-
edge. LTLf is an intuitive and very rich language that can express
complex whole sequences over time. It is rather easy to be expressed
using natural language and this makes it compact and easier to
use by non-experts. LTLf can provide a mechanism for domain
knowledge to be incorporated with minimal user effort.

We demonstrated empirically the increase in the ability and the
speed of the RL agent convergence in the classic flag collection
domain and a variant with an aspect of uncertainty. Our agent
manages to learn the correct order of picking up the flags even
in the case of uncertainty in the environment, something that the
STRIPS method fails to do.

We are motivated to pursue three main future directions to build
on this work. We will investigate and further expand our exper-
iments to scenarios where LTLf can offer needed flexibility in
guiding the learning agent e.g. in case of uncertainties. We will
also investigate using LTLf in multi-agent systems as we think that
our method can efficiently guide coordination behaviors between
agents. Lastly, we think that our method can make RL more feasible
in real-world scenarios, therefore we are interested in expanding
our experiments to real robotic systems.
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