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Inter-Agent Rewards
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How can agents /earn an effective
rewarding policy to increase cooperation
in multi-agent reinforcement learning?



Related Work

Influencing an opponent

« Opponent Modelling:

— gradient-based opponent:

- Zhang, C. et al., 2010
- Foerster, J. et al,, 2018
- Letcher, A. et al,, 2018

— non gradient-based opponent:
- Xie, A. et al., 2020

Influencing opponent through regular actions

Ihﬂuenciﬁg opponent through rewards

Optimal reward functions

« Inverse Reinforcement Learning (IRL):
— given optimal policy or trajectories, can
we recover R? (Ng, A. Y., & Russell, S. J., 2000)

« AutoRL:
— given a goal or a task, can we recover R?
(Chiang,H. T. L. et al,, 2019)

» Adversarial RL:

— given optimal adversarial policy or
trajectories and R_env, can we recover
R_adv? (Rakhsha, A. et al., 2020; Zhang, X. et al., 2020)

— given a gradient-based opponent and without
prior access to a desired opponent policy, can we
recover R_peer?



The Model
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.I Experiments 1/2: Teacher-Student
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.I Experiments 2/2: Iterated Prisoner's Dilemma
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.l Conclusion

Performing one look-ahead step allows agents to correctly reward each other in simple
environments without a prior knowledge of the optimal opponent policy

— How does this method scale for larger state spaces?

— How does it scale with n players?

Only negative peer rewarding was tested
— How would agents learn to reward using positive feedback instead?

The feedback dynamics, i.e., the ratio between the value of the given feedback and its cost are
crucial for effective learning

— At what point do the immediate costs of sending feedback become larger than their long
term benefits?
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Thank you for your attention !




